ﻻ يوجد ملخص باللغة العربية
Splines come in a variety of flavors that can be characterized in terms of some differential operator L. The simplest piecewise-constant model corresponds to the derivative operator. Likewise, one can extend the traditional notion of total variation by considering more general operators than the derivative. This leads us to the definition of the generalized Beppo-Levi space M, which is further identified as the direct sum of two Banach spaces. We then prove that the minimization of the generalized total variation (gTV) over M, subject to some arbitrary (convex) consistency constraints on the linear measurements of the signal, admits nonuniform L-spline solutions with fewer knots than the number of measurements. This shows that non-uniform splines are universal solutions of continuous-domain linear inverse problems with LASSO, L1, or TV-like regularization constraints. Remarkably, the spline-type is fully determined by the choice of L and does not depend on the actual nature of the measurements.
Ultrafunctions are a particular class of generalized functions defined on a hyperreal field $mathbb{R}^{*}supsetmathbb{R}$ that allow to solve variational problems with no classical solutions. We recall the construction of ultrafunctions and we study
An overview is given of Bayesian inversion and regularization procedures. In particular, the conceptual basis of the maximum entropy method (MEM) is discussed, and extensions to positive/negative and complex data are highlighted. Other deconvolution
We study the effect of additive noise to the inversion of FIOs associated to a diffeomorphic canonical relation. We use the microlocal defect measures to measure the power spectrum of the noise and analyze how that power spectrum is transformed under
We study the phase diagram and the algorithmic hardness of the random `locked constraint satisfaction problems, and compare them to the commonly studied non-locked problems like satisfiability of boolean formulas or graph coloring. The special proper
We study inverse problems for the Poisson equation with source term the divergence of an $mathbf{R}^3$-valued measure, that is, the potential $Phi$ satisfies $$ Delta Phi= text{div} boldsymbol{mu}, $$ and $boldsymbol{mu}$ is to be reconstructed k