ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized frame operator distance problems

67   0   0.0 ( 0 )
 نشر من قبل Demetrio Stojanoff
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $Sinmathcal{M}_d(mathbb{C})^+$ be a positive semidefinite $dtimes d$ complex matrix and let $mathbf a=(a_i)_{iinmathbb{I}_k}in mathbb{R}_{>0}^k$, indexed by $mathbb{I}_k={1,ldots,k}$, be a $k$-tuple of positive numbers. Let $mathbb T_{d}(mathbf a )$ denote the set of families $mathcal G={g_i}_{iinmathbb{I}_k}in (mathbb{C}^d)^k$ such that $|g_i|^2=a_i$, for $iinmathbb{I}_k$; thus, $mathbb T_{d}(mathbf a )$ is the product of spheres in $mathbb{C}^d$ endowed with the product metric. For a strictly convex unitarily invariant norm $N$ in $mathcal{M}_d(mathbb{C})$, we consider the generalized frame operator distance function $Theta_{( N , , , S, , , mathbf a)}$ defined on $mathbb T_{d}(mathbf a )$, given by $$ Theta_{( N , , , S, , , mathbf a)}(mathcal G) =N(S-S_{mathcal G }) quad text{where} quad S_{mathcal G}=sum_{iinmathbb{I}_k} g_i,g_i^*inmathcal{M}_d(mathbb{C})^+,. $$ In this paper we determine the geometrical and spectral structure of local minimizers $mathcal G_0inmathbb T_{d}(mathbf a )$ of $Theta_{( N , , , S, , , mathbf a)}$. In particular, we show that local minimizers are global minimizers, and that these families do not depend on the particular choice of $N$.



قيم البحث

اقرأ أيضاً

111 - Rosario Corso 2019
Given a sequence of elements $xi={xi_n}_{nin mathbb{N}}$ of a Hilbert space, an operator $T_xi$ is defined as the operator associated to a sesquilinear form determined by $xi$. This operator is in general different to the classical frame operator but possesses some remarkable properties. For instance, $T_xi$ is self-adjoint (in an specific space), unconditionally defined and, when $xi$ is a lower semi-frame, $T_xi$ gives a simple expression of a dual of $xi$. The operator $T_xi$ and lower semi-frames are studied in the context of sequences of integer translates.
Recently, a new distance has been introduced for the graphs of two point-to-set operators, one of which is maximally monotone. When both operators are the subdifferential of a proper lower semicontinuous convex function, this distance specializes und er modest assumptions to the classical Bregman distance. We name this new distance the generalized Bregman distance, and we shed light on it with examples that utilize the other two most natural representative functions: the Fitzpatrick function and its conjugate. We provide sufficient conditions for convexity, coercivity, and supercoercivity: properties that are essential for implementation in proximal point type algorithms. We establish these results for both the left and right variants of this new distance. We construct examples closely related to the Kullback--Leibler divergence, which was previously considered in the context of Bregman distances, and whose importance in information theory is well known. In so doing, we demonstrate how to compute a difficult Fitzpatrick conjugate function, and we discover natural occurrences of the Lambert $W$ function, whose importance in optimization is of growing interest.
In [11] the authors investigated a family of quotient Hilbert modules in the Cowen-Douglas class over the unit disk constructed from classical Hilbert modules such as the Hardy and Bergman modules. In this paper we extend the results to the multivari able case of higher multiplicity. Moreover, similarity as well as isomorphism results are obtained.
Ultrafunctions are a particular class of generalized functions defined on a hyperreal field $mathbb{R}^{*}supsetmathbb{R}$ that allow to solve variational problems with no classical solutions. We recall the construction of ultrafunctions and we study the relationships between these generalized solutions and classical minimizing sequences. Finally, we study some examples to highlight the potential of this approach.
Many authors have considered and investigated generalized fractional differential operators. The main object of this present paper is to define a new generalized fractional differential operator $mathfrak{T}^{beta,tau,gamma},$ which generalized the S rivastava-Owa operators. Moreover, we investigate of the geometric properties such as univalency, starlikeness, convexity for their normalization. Further, boundedness and compactness in some well known spaces, such as Bloch space for last mention operator also are considered. Our tool is based on the generalized hypergeometric function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا