ترغب بنشر مسار تعليمي؟ اضغط هنا

In-flight performance of the DAMPE silicon tracker

226   0   0.0 ( 0 )
 نشر من قبل Andrii Tykhonov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

DAMPE (DArk Matter Particle Explorer) is a spaceborne high-energy cosmic ray and gamma-ray detector, successfully launched in December 2015. It is designed to probe astroparticle physics in the broad energy range from few GeV to 100 TeV. The scientific goals of DAMPE include the identification of possible signatures of Dark Matter annihilation or decay, the study of the origin and propagation mechanisms of cosmic-ray particles, and gamma-ray astronomy. DAMPE consists of four sub-detectors: a plastic scintillator strip detector, a Silicon-Tungsten tracKer-converter (STK), a BGO calorimeter and a neutron detector. The STK is composed of six double layers of single-sided silicon micro-strip detectors interleaved with three layers of tungsten for photon



قيم البحث

اقرأ أيضاً

We describe the in-flight performance of the horn-coupled Lumped Element Kinetic Inductance Detector arrays of the balloon-borne OLIMPO experiment. These arrays have been designed to match the spectral bands of OLIMPO: 150, 250, 350, and 460 GHz, and they have been operated at 0.3 K and at an altitude of 37.8 km during the stratospheric flight of the OLIMPO payload, in Summer 2018. During the first hours of flight, we tuned the detectors and verified their large dynamics under the radiative background variations due to elevation increase of the telescope and to the insertion of the plug-in room-temperature differential Fourier transform spectrometer into the optical chain. We have found that the detector noise equivalent powers are close to be photon-noise limited and lower than those measured on the ground. Moreover, the data contamination due to primary cosmic rays hitting the arrays is less than 3% for all the pixels of all the arrays, and less than 1% for most of the pixels. These results can be considered the first step of KID technology validation in a representative space environment.
The DArk Matter Particle Explorer (DAMPE) is one of the four satellites within the Strategic Pioneer Research Program in Space Science of the Chinese Academy of Science (CAS). The Silicon-Tungsten Tracker (STK), which is composed of 768 singled-sided silicon microstrip detectors, is one of the four subdetectors in DAMPE, providing track reconstruction and charge identification for relativistic charged particles. The charge response of DAMPE silicon microstrip detectors is complicated, depending on the incident angle and impact position. A new charge reconstruction algorithm for the DAMPE silicon microstrip detector is introduced in this paper. This algorithm can correct the complicated charge response, and was proved applicable by the ion test beam.
The AGILE scientific instrument has been calibrated with a tagged $gamma$-ray beam at the Beam Test Facility (BTF) of the INFN Laboratori Nazionali di Frascati (LNF). The goal of the calibration was the measure of the Point Spread Function (PSF) as a function of the photon energy and incident angle and the validation of the Monte Carlo (MC) simulation of the silicon tracker operation. The calibration setup is described and some preliminary results are presented.
111 - Yuhong Yu , Zhiyu Sun , Hong Su 2017
he DArk Matter Particle Explorer (DAMPE) is a general purposed satellite-borne high energy $gamma-$ray and cosmic ray detector, and among the scientific objectives of DAMPE are the searches for the origin of cosmic rays and an understanding of Dark M atter particles. As one of the four detectors in DAMPE, the Plastic Scintillator Detector (PSD) plays an important role in the particle charge measurement and the photons/electrons separation. The PSD has 82 modules, each consists of a long organic plastic scintillator bar and two PMTs at both ends for readout, in two layers and covers an overall active area larger than 82 cm $times$ 82 cm. It can identify the charge states for relativistic ions from H to Fe, and the detector efficiency for Z=1 particles can reach 0.9999. The PSD has been successfully launched with DAMPE on Dec. 17, 2015. In this paper, the design, the assembly, the qualification tests of the PSD and some of the performance measured on the ground have been described in detail.
We present the results of the first high-altitude balloon flight test of a concept for an advanced Compton telescope making use of modern scintillator materials with silicon photomultiplier (SiPM) readouts. There is a need in the fields of high-energ y astronomy and solar physics for new medium-energy gamma-ray (~0.4 - 10 MeV) detectors capable of making sensitive observations. A fast scintillator- based Compton telescope with SiPM readouts is a promising solution to this instrumentation challenge, since the fast response of the scintillators permits the rejection of background via time-of-flight (ToF) discrimination. The Solar Compton Telescope (SolCompT) prototype was designed to demonstrate stable performance of this technology under balloon-flight conditions. The SolCompT instrument was a simple two-element Compton telescope, consisting of an approximately one-inch cylindrical stilbene crystal for a scattering detector and a one-inch cubic LaBr3:Ce crystal for a calorimeter detector. Both scintillator detectors were read out by 2 x 2 arrays of Hamamatsu S11828-3344 MPPC devices. Custom front-end electronics provided optimum signal rise time and linearity, and custom power supplies automatically adjusted the SiPM bias voltage to compensate for temperature-induced gain variations. A tagged calibration source, consisting of ~240 nCi of Co-60 embedded in plastic scintillator, was placed in the field of view and provided a known source of gamma rays to measure in flight. The SolCompT balloon payload was launched on 24 August 2014 from Fort Sumner, NM, and spent ~3.75 hours at a float altitude of ~123,000 feet. The instrument performed well throughout the flight. After correcting for small (~10%) residual gain variations, we measured an in-flight ToF resolution of ~760 ps (FWHM). Advanced scintillators with SiPM readouts continue to show great promise for future gamma-ray instruments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا