ﻻ يوجد ملخص باللغة العربية
The CoHSI (Conservation of Hartley-Shannon Information) distribution is at the heart of a wide-class of discrete systems, defining the length distribution of their components amongst other global properties. Discrete systems such as the known proteome where components are proteins, computer software, where components are functions and texts where components are books, are all known to fit this distribution accurately. In this short paper, we explore its solution and its resulting properties and lay the foundation for a series of papers which will demonstrate amongst other things, why the average length of components is so highly conserved and why long components occur so frequently in these systems. These properties are not amenable to local arguments such as natural selection in the case of the proteome or human volition in the case of computer software, and indeed turn out to be inevitable global properties of discrete systems devolving directly from CoHSI and shared by all. We will illustrate this using examples from the Uniprot protein database as a prelude to subsequent studies.
The CoHSI (Conservation of Hartley-Shannon Information) distribution is at the heart of a wide-class of discrete systems, defining (amongst other properties) the length distribution of their components. Discrete systems such as the known proteome, co
Cicadas (Homoptera:Cicadidae) are insects able to produce loudly songs and it is known that the mechanism to produce sound of tymballing cicadas works as a Helmholtz resonator. In this work we offer evidence on the participation of the wings in a hig
As a first step in the search of an analytical study of mechanical denaturation of DNA in terms of the sequence, we study stable, stationary solutions in the discrete, finite and homogeneous Peyrard-Bishop DNA model. We find and classify all the stat
We present simulations of the cluster distribution in several dark matter models, using an optimized version of the truncated Zeldovich approximation (TZA). We compare them with N-body cluster simulations and find that the TZA provides a very accurat
It is shown that there is a sense in splitting Genetic Code Table (GCT) into three parts using the harmonic mean, calculated by the formula H (a, b) = 2ab / (a + b), where a = 63 and b = 31.5. Within these three parts, the amino acids (AAs) are posit