ﻻ يوجد ملخص باللغة العربية
It is shown that there is a sense in splitting Genetic Code Table (GCT) into three parts using the harmonic mean, calculated by the formula H (a, b) = 2ab / (a + b), where a = 63 and b = 31.5. Within these three parts, the amino acids (AAs) are positioned on the basis of the validity of the evident regularities of key parameters, such as polarity, hydrophobicity and enzyme-mediated amino acid classification. In addition, there are obvious balances of the number of atoms in the nucleotide triplets and corresponding amino acid groups and/or classes.
The paper represents three supplements to the source paper, q-bio/0610044 [q-bio.OT], with three new series of harmonic structures of the genetic code, determined by Gauss arithmetical algorithm; by Table of Minimal Adding, as in (Rakocevic, 2011a: T
The matrix form of the presentation of the genetic code is described as the cognitive form to analyze structures of the genetic code. A similar matrix form is utilized in the theory of signal processing. The Kronecker family of the genetic matrices i
In this work it is shown that 20 canonical amino acids (AAs) within genetic code appear to be a whole system with strict AAs positions; more exactly, with AAs ordinal number in three variants; first variant 00-19, second 00-21 and third 00-20. The or
This paper presents, for the first time, four diversity types of protein amino acids. The first type includes two amino acids (G, P), both without standard hydrocarbon side chains; the second one four amino acids, as two pairs [(A, L), (V, I)], all w
The genetic code is the set of rules by which information encoded in genetic material (DNA or RNA sequences) is translated into proteins (amino acid sequences) by living cells. The code defines a mapping between tri-nucleotide sequences, called codon