ﻻ يوجد ملخص باللغة العربية
Deep learning (DL) has achieved remarkable progress over the past decade and been widely applied to many safety-critical applications. However, the robustness of DL systems recently receives great concerns, such as adversarial examples against computer vision systems, which could potentially result in severe consequences. Adopting testing techniques could help to evaluate the robustness of a DL system and therefore detect vulnerabilities at an early stage. The main challenge of testing such systems is that its runtime state space is too large: if we view each neuron as a runtime state for DL, then a DL system often contains massive states, rendering testing each state almost impossible. For traditional software, combinatorial testing (CT) is an effective testing technique to reduce the testing space while obtaining relatively high defect detection abilities. In this paper, we perform an exploratory study of CT on DL systems. We adapt the concept in CT and propose a set of coverage criteria for DL systems, as well as a CT coverage guided test generation technique. Our evaluation demonstrates that CT provides a promising avenue for testing DL systems. We further pose several open questions and interesting directions for combinatorial testing of DL systems.
Recently, there has been a significant growth of interest in applying software engineering techniques for the quality assurance of deep learning (DL) systems. One popular direction is deep learning testing, where adversarial examples (a.k.a.~bugs) of
Deep learning (DL) defines a new data-driven programming paradigm that constructs the internal system logic of a crafted neuron network through a set of training data. We have seen wide adoption of DL in many safety-critical scenarios. However, a ple
Deep learning (DL) defines a new data-driven programming paradigm where the internal system logic is largely shaped by the training data. The standard way of evaluating DL models is to examine their performance on a test dataset. The quality of the t
Combinatorial interaction testing (CIT) is a useful testing technique to address the interaction of input parameters in software systems. In many applications, the technique has been used as a systematic sampling technique to sample the enormous poss
The automated generation of test code can reduce the time and effort required to build software while increasing its correctness and robustness. In this paper, we present RE-ASSERT, an approach for the automated generation of JUnit test asserts which