ترغب بنشر مسار تعليمي؟ اضغط هنا

Code-Aware Combinatorial Interaction Testing

86   0   0.0 ( 0 )
 نشر من قبل Bestoun Ahmed Dr.
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Combinatorial interaction testing (CIT) is a useful testing technique to address the interaction of input parameters in software systems. In many applications, the technique has been used as a systematic sampling technique to sample the enormous possibilities of test cases. In the last decade, most of the research activities focused on the generation of CIT test suites as it is a computationally complex problem. Although promising, less effort has been paid for the application of CIT. In general, to apply the CIT, practitioners must identify the input parameters for the Software-under-test (SUT), feed these parameters to the CIT tool to generate the test suite, and then run those tests on the application with some pass and fail criteria for verification. Using this approach, CIT is used as a black-box testing technique without knowing the effect of the internal code. Although useful, practically, not all the parameters having the same impact on the SUT. This paper introduces a different approach to use the CIT as a gray-box testing technique by considering the internal code structure of the SUT to know the impact of each input parameter and thus use this impact in the test generation stage. We applied our approach to five reliable case studies. The results showed that this approach would help to detect new faults as compared to the equal impact parameter approach.



قيم البحث

اقرأ أيضاً

This paper proposes configuration testing--evaluating configuration values (to be deployed) by exercising the code that uses the values and assessing the corresponding program behavior. We advocate that configuration values should be systematically t ested like software code and that configuration testing should be a key reliability engineering practice for preventing misconfigurations from production deployment. The essential advantage of configuration testing is to put the configuration values (to be deployed) in the context of the target software program under test. In this way, the dynamic effects of configuration values and the impact of configuration changes can be observed during testing. Configuration testing overcomes the fundamental limitations of de facto approaches to combatting misconfigurations, namely configuration validation and software testing--the former is disconnected from code logic and semantics, while the latter can hardly cover all possible configuration values and their combinations. Our preliminary results show the effectiveness of configuration testing in capturing real-world misconfigurations. We present the principles of writing new configuration tests and the promises of retrofitting existing software tests to be configuration tests. We discuss new adequacy and quality metrics for configuration testing. We also explore regression testing techniques to enable incremental configuration testing during continuous integration and deployment in modern software systems.
104 - Lei Ma , Fuyuan Zhang , Minhui Xue 2018
Deep learning (DL) has achieved remarkable progress over the past decade and been widely applied to many safety-critical applications. However, the robustness of DL systems recently receives great concerns, such as adversarial examples against comput er vision systems, which could potentially result in severe consequences. Adopting testing techniques could help to evaluate the robustness of a DL system and therefore detect vulnerabilities at an early stage. The main challenge of testing such systems is that its runtime state space is too large: if we view each neuron as a runtime state for DL, then a DL system often contains massive states, rendering testing each state almost impossible. For traditional software, combinatorial testing (CT) is an effective testing technique to reduce the testing space while obtaining relatively high defect detection abilities. In this paper, we perform an exploratory study of CT on DL systems. We adapt the concept in CT and propose a set of coverage criteria for DL systems, as well as a CT coverage guided test generation technique. Our evaluation demonstrates that CT provides a promising avenue for testing DL systems. We further pose several open questions and interesting directions for combinatorial testing of DL systems.
Context: Combinatorial testing strategies have lately received a lot of attention as a result of their diverse applications. In its simple form, a combinatorial strategy can reduce several input parameters (configurations) of a system into a small se t based on their interaction (or combination). In practice, the input configurations of software systems are subjected to constraints, especially in case of highly configurable systems. To implement this feature within a strategy, many difficulties arise for construction. While there are many combinatorial interaction testing strategies nowadays, few of them support constraints. Objective: This paper presents a new strategy, to construct combinatorial interaction test suites in the presence of constraints. Method: The design and algorithms are provided in detail. To overcome the multi-judgment criteria for an optimal solution, the multi-objective particle swarm optimization and multithreading are used. The strategy and its associated algorithms are evaluated extensively using different benchmarks and comparisons. Results: Our results are promising as the evaluation results showed the efficiency and performance of each algorithm in the strategy. The benchmarking results also showed that the strategy can generate constrained test suites efficiently as compared to state-of-the-art strategies. Conclusion: The proposed strategy can form a new way for constructing of constrained combinatorial interaction test suites. The strategy can form a new and effective base for future implementations.
Automatic program repair (APR) is crucial to improve software reliability. Recently, neural machine translation (NMT) techniques have been used to fix software bugs automatically. While promising, these approaches have two major limitations. Their se arch space often does not contain the correct fix, and their search strategy ignores software knowledge such as strict code syntax. Due to these limitations, existing NMT-based techniques underperform the best template-based approaches. We propose CURE, a new NMT-based APR technique with three major novelties. First, CURE pre-trains a programming language (PL) model on a large software codebase to learn developer-like source code before the APR task. Second, CURE designs a new code-aware search strategy that finds more correct fixes by focusing on compilable patches and patches that are close in length to the buggy code. Finally, CURE uses a subword tokenization technique to generate a smaller search space that contains more correct fixes. Our evaluation on two widely-used benchmarks shows that CURE correctly fixes 57 Defects4J bugs and 26 QuixBugs bugs, outperforming all existing APR techniques on both benchmarks.
Early design artifacts of embedded systems, such as architectural models, represent convenient abstractions for reasoning about a systems structure and functionality. One such example is the Electronic Architecture and Software Tools-Architecture Des cription Language (EAST-ADL), a domain-specific architectural language that targets the automotive industry. EAST-ADL is used to represent both hardware and software elements, as well as related extra-functional information (e.g., timing properties, triggering information, resource consumption). Testing architectural models is an important activity in engineering large-scale industrial systems, which sparks a growing research interest. The main contributions of this paper are: (i) an approach for creating energy-related mutants for EAST-ADL architectural models, (ii) a method for overcoming the equivalent mutant problem (i.e., the problem of finding a test case which can distinguish the observable behavior of a mutant from the original one), (iii) a test generation approach based on UPPAAL Statistical Model Checker (SMC), and (iv) a test selection criteria based on mutation analysis using our MATS tool.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا