ﻻ يوجد ملخص باللغة العربية
We found that the measurement sensitivity of an optical integrating gyroscope is fundamentally limited due to ponderomotive action of the light leading to the standard quantum limit of the rotation angle detection. The uncorrelated quantum fluctuations of power of clockwise and counterclockwise electromagnetic waves result in optical power-dependent uncertainty of the angular gyroscope position. We also show that, on the other hand, a quantum back action evading measurement of angular momentum of a gyroscope becomes feasible if proper measurement strategy is selected. The angle is perturbed in this case. This observation hints on fundamental inequivalency of integrating and rate gyroscopes.
The recent discovery of gravitational waves (GW) by LIGO has impressively launched the novel field of gravitational astronomy and it allowed us to glimpse at exciting objects we could so far only speculate about. Further sensitivity improvements at t
Based on two-photon entanglement, quantum remote sensing enables the measurement and detection to be done non-locally and remotely. However, little attention has been paid to implement a noncontact way to sense a real objects angular rotation, which
The speed meter concept has been identified as a technique that can potentially provide laser-interferometric measurements at a sensitivity level which surpasses the Standard Quantum Limit (SQL) over a broad frequency range. As with other sub-SQL mea
Single photons with orbital angular momentum (OAM) have attracted substantial attention from researchers. A single photon can carry infinite OAM values theoretically. Thus, OAM photon states have been widely used in quantum information and fundamenta
That the speed of light in free space is constant is a cornerstone of modern physics. However, light beams have finite transverse size, which leads to a modification of their wavevectors resulting in a change to their phase and group velocities. We s