ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the explicit wave-breaking mechanism and its dynamical behavior near this singularity for the generalized b-equation. This generalized b-equation arises from the shallow water theory, which includes the Camassa-Holm equation, the Degasperis-Procesi equation, the Fornberg-Whitham equation, the Korteweg-de Vires equation and the classical b-equation. More precisely, we find that there exists an explicit self-similar blowup solution for the generalized b-equation. Meanwhile, this self-similar blowup solution is asymptotic stability in a parameters domain, but instability in other parameters domain.
We show the existence of self-similar solutions for the Muskat equation. These solutions are parameterized by $0<s ll 1$; they are exact corners of slope $s$ at $t=0$ and become smooth in $x$ for $t>0$.
Inspired by the numerical evidence of a potential 3D Euler singularity cite{luo2014potentially,luo2013potentially-2}, we prove finite time singularity from smooth initial data for the HL model introduced by Hou-Luo in cite{luo2014potentially,luo2013p
We consider the heat flow of corotational harmonic maps from $mathbb R^3$ to the three-sphere and prove the nonlinear asymptotic stability of a particular self-similar shrinker that is not known in closed form. Our method provides a novel, systematic
This paper is concerned with the Cauchy problem for an energy-supercritical nonlinear wave equation in odd space dimensions that arises in equivariant Yang-Mills theory. In each dimension, there is a self-similar finite-time blowup solution to this e
We prove the existence of a (spectrally) stable self-similar blow-up solution $f_0$ to the heat flow for corotational harmonic maps from $mathbb R^3$ to the three-sphere. In particular, our result verifies the spectral gap conjecture stated by one of