ﻻ يوجد ملخص باللغة العربية
We performed systematic studies on the transport properties of FeSe thin films with controlled degrees of in-plane lattice strain, including both tensile and compressive strains. The superconducting transition temperature, $T_{mathrm c}$, increases up to 12 K for films with compressive strain while the superconductivity disappears for films with large tensile strains. On the other hand, the structural (nematic) transition temperature, $T_{mathrm s}$, slightly decreases as the in-plane strain is more compressive. This suggests that the structural transition can be extinguished by a smaller amount of Te substitution for films with more compressive strain, which may lead to higher $T_{mathrm c}$ in FeSe$_{1-x}$Te$_x$. It was also found that the carrier densities evaluated via transport properties increase as the in-plane strain becomes more compressive. A clear correlation between $T_{mathrm c}$ and the carrier densities suggests that it is essential to increase carrier densities for the $T_{mathrm c}$ enhancement of iron chalcogenides.
FeSe0.5Te0.5 thin films were grown by pulsed laser deposition on CaF2, LaAlO3 and MgO substrates and structurally and electro-magnetically characterized in order to study the influence of the substrate on their transport properties. The in-plane latt
We have investigated the crystal structures and superconducting properties of thin films of FeSe$_{0.5}$Te$_{0.5}$ grown on eight different substrates. Superconductivity is not correlated with the lattice mismatch; rather it is correlated with the de
We have studied the effect of tensile strain on the superconductivity in FeSe films. 50 nm, 100 nm, and 200 nm FeSe films were grown on MgO, SrTiO$_3$, and LaAlO$_3$ substrates by using a pulsed laser deposition technique. X-ray diffraction analysis
We have investigated the correlation between structural and transport properties in sputtered $beta$-FeSe films grown onto SrTiO$_3$ (100). The growth parameters, such as substrate temperature and thickness, have been varied in order to explore diffe
The effects of neutron irradiation on normal state and superconducting properties of epitaxial magnesium diboride thin films are studied up to fluences of 1020 cm-2. All the properties of the films change systematically upon irradiation. Critical tem