ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematic Comparison of Eight Substrates in the Growth of FeSe$_{0.5}$Te$_{0.5}$ Superconducting Thin Films

90   0   0.0 ( 0 )
 نشر من قبل Yoshinori Imai
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated the crystal structures and superconducting properties of thin films of FeSe$_{0.5}$Te$_{0.5}$ grown on eight different substrates. Superconductivity is not correlated with the lattice mismatch; rather it is correlated with the degree of in-plane orientation and with the lattice parameter ratio $c/a$. The best superconducting properties were observed in films on MgO and LaAlO$_3$ ($T_mathrm{c}^mathrm{zero}$ of 9.5 K). TEM observation showed that the presence or absence of an amorphous-like layer at the substrate surface plays a key role in determining the structural and superconducting properties of the grown films.

قيم البحث

اقرأ أيضاً

118 - I. Tsukada , M. Hanawa , T. Akiike 2011
In-situ epitaxial growth of FeSe$_{0.5}$Te$_{0.5}$ thin films is demonstrated on a non-oxide substrate CaF$_2$. Structural analysis reveals that compressive stress is moderately added to 36-nm thick FeSe$_{0.5}$Te$_{0.5}$, which pushes up the critica l temperature above 15 K, showing higher values than that of bulk crystals. Critical current density at $T$ = 4.5 K reaches 5.9 x 10$^4$ Acm$^{-2}$ at $mu_0H$ = 10 T, and 4.2 x 10$^4$ Acm$^{-2}$ at $mu_0H$ = 14 T. These results indicate that fluoride substrates have high potential for the growth of iron-based superconductors in comparison with popular oxide substrates.
139 - Weidong Si , Juan Zhou , Qing Jie 2011
The high upper critical field characteristic of the recently discovered iron-based superconducting chalcogenides opens the possibility of developing a new type of non-oxide high-field superconducting wires. In this work, we utilize a buffered metal t emplate on which we grow a textured FeSe$_{0.5}$Te$_{0.5}$ layer, an approach developed originally for high temperature superconducting coated conductors. These tapes carry high critical current densities (>1$times10^{4}$A/cm$^{2}$) at about 4.2K under magnetic field as high as 25 T, which are nearly isotropic to the field direction. This demonstrates a very promising future for iron chalcogenides for high field applications at liquid helium temperatures. Flux pinning force analysis indicates a point defect pinning mechanism, creating prospects for a straightforward approach to conductor optimization.
111 - C. S. Zhu , J. H. Cui , B. Lei 2017
Using a field-effect transistor (FET) configuration with solid Li-ion conductor (SIC) as gate dielectric, we have successfully tuned carrier density in FeSe$_{0.5}$Te$_{0.5}$ thin flakes, and the electronic phase diagram has been mapped out. It is fo und that electron doping controlled by SIC-FET leads to a suppression of the superconducting phase, and eventually gives rise to an insulating state in FeSe$_{0.5}$Te$_{0.5}$. During the gating process, the (001) peak in XRD patterns stays at the same position and no new diffraction peak emerges, indicating no evident Li$^+$ ions intercalation into the FeSe$_{0.5}$Te$_{0.5}$. It indicates that a systematic change of electronic properties in FeSe$_{0.5}$Te$_{0.5}$ arises from the electrostatic doping induced by the accumulation of Li$^+$ ions at the interface between FeSe$_{0.5}$Te$_{0.5}$ and solid ion conductor in the devices. It is striking that these findings are drastically different from the observation in FeSe thin flakes using the same SIC-FET, in which $T_c$ is enhanced from 8 K to larger than 40 K, then the system goes into an insulating phase accompanied by structural transitions.
We present direct measurements of the superconducting order parameter in nearly optimal FeSe$_{0.5}$Te$_{0.5}$ single crystals with critical temperature $T_C approx 14$ K. Using intrinsic multiple Andreev reflection effect (IMARE) spectroscopy and me asurements of lower critical field, we directly determined two superconducting gaps, $Delta_L approx 3.3 - 3.4$ meV and $Delta_S approx 1$ meV, and their temperature dependences. We show that a two-band model fits well the experimental data. The estimated electron-boson coupling constants indicate a strong intraband and a moderate interband interaction.
Polycrystalline samples of FeSe$_{0.5}$Te$_{0.5}$ were synthesized using a conventional solid-state reaction method. The onset of bulk superconductivity transition was confirmed by SQUID magnetometry at 12.5~K. $^{57}$Fe Mossbauer spectra in transmis sion geometry were recorded at temperatures between 6.0 and 320 K. Both the isomer shift and the total absorption started to drop about $T_c$, indicating a softening of the lattice. The drop is estimated to correspond to at least 60~K from the original Debye temperature $theta_{rm D}approx 460$~K. Seebeck measurements indicate that the samples are $n$-type conductors at low temperatures with a cross-over to $p$-type conductivity around 135 K. The zero Seebeck coefficient is seen below $10.6$~K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا