ﻻ يوجد ملخص باللغة العربية
We explore the outcomes of detailed microscopic models by calculating second- and third-harmonic generation from thin film surfaces with discontinuous free-electron densities. These circumstances can occur in structures consisting of a simple metal mirror, or arrangements composed of either different metals or a metal and a free electron system like a conducting oxide. Using a hydrodynamic approach we highlight the case of a gold mirror, and that of a two-layer system containing indium tin oxide (ITO) and gold. We assume the gold mirror surface is characterized by a free-electron cloud of varying density that spills into the vacuum, which as a result of material dispersion exhibits epsilon-near-zero conditions and local field enhancement at the surface. For a bylayer consisting of a thin ITO and gold films, if the wave is incident from the ITO side the electromagnetic field is presented with a free-electron discontinuity at the ITO/gold interface, and wavelength-dependent, epsilon-near-zero conditions that enhance local fields and conversion efficiencies, and determine the surfaces emission properties. We evaluate the relative significance of additional nonlinear sources that arise when a free-electron discontinuity is present, and show that harmonic generation can be sensitive to the density of the screening free-electron cloud, and not its thickness. Our findings also suggest the possibility to control surface harmonic generation through surface charge engineering.
We present a new theoretical approach to the study of second and third harmonic generation from metallic nanostructures and nanocavities filled with a nonlinear material, in the ultrashort pulse regime. We model the metal as a two-component medium, u
We theoretically investigate second harmonic generation that originates from the nonlinear, magnetic Lorentz force term from single and multiple apertures carved on thick, opaque metal substrates. The linear transmission properties of apertures on me
Monolayer transition metal dichalcogenides (TMDs) exhibit high nonlinear optical (NLO) susceptibilities. Experiments on MoS$_2$ have indeed revealed very large second-order ($chi^{(2)}$) and third-order ($chi^{(3)}$) optical susceptibilities. However
Rigorous electrodynamical simulations based on the nonlinear Drude model are performed to investigate the influence of strong coupling on high harmonic generation by periodic metal gratings. It is shown that a thin dispersive material with a third or
We investigate supercontinuum generation in several suspended-core soft-glass photonic crystal fibers pumped by an optical parametric oscillator tunable around 1550 nm. The fibers were drawn from lead-bismuth-gallium-cadmium-oxide glass (PBG-81) with