ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical harmonic generation in monolayer group-VI transition metal dichalcogenides

78   0   0.0 ( 0 )
 نشر من قبل Zhipei Sun
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Monolayer transition metal dichalcogenides (TMDs) exhibit high nonlinear optical (NLO) susceptibilities. Experiments on MoS$_2$ have indeed revealed very large second-order ($chi^{(2)}$) and third-order ($chi^{(3)}$) optical susceptibilities. However, third harmonic generation results of other layered TMDs has not been reported. Furthermore, the reported $chi^{(2)}$ and $chi^{(3)}$ of MoS$_2$ vary by several orders of magnitude, and a reliable quantitative comparison of optical nonlinearities across different TMDs has remained elusive. Here, we investigate second- and third-harmonic generation, and three-photon photoluminescence in TMDs. Specifically, we present an experimental study of $chi^{(2)}$, and $chi^{(3)}$ of four common TMD materials (ce{MoS2}, ce{MoSe2}, ce{WS2} and ce{WSe2}) by placing different TMD flakes in close proximity to each other on a common substrate, allowing their NLO properties to be accurately obtained from a single measurement. $chi^{(2)}$ and $chi^{(3)}$ of the four monolayer TMDs have been compared, indicating that they exhibit distinct NLO responses. We further present theoretical simulations of these susceptibilities in qualitative agreement with the measurements. Our comparative studies of the NLO responses of different two-dimensional layered materials allow us to select the best candidates for atomic-scale nonlinear photonic applications, such as frequency conversion and all-optical signal processing.

قيم البحث

اقرأ أيضاً

We theoretically investigate the orientation dependence of high-harmonic generation (HHG) in monolayer transition metal dichalcogenides (TMDCs). We find that, unlike conventional solid-state and atomic layered materials such as graphene, both paralle l and perpendicular emissions with respect to the incident electric field exist in TMDCs. Interestingly, the parallel (perpendicular) emissions principally contain only odd-(even-) order harmonics. Both harmonics show the same periodicity in the crystallographic orientations but opposite phases. These peculiar behaviors can be understood on the basis of the dipole moments in TMDCs, which reflect the symmetries of both atomic orbitals and lattice structures. Our findings are qualitatively consistent with recent experi- mental results and provide a possibility for high-harmonic spectroscopy of solid-state materials.
We theoretically investigate detuning-dependent properties of high-order harmonic generation (HHG) in monolayer transition metal dichalcogenides (TMDCs). In contrast to HHG in conventional materials, TMDCs show both parallel and perpendicular emissio ns with respect to the incident electric field. We find that such an anomalous emission can be artificially controlled by the frequency detuning of the incident electric fields, i.e., the parallel and perpendicular HHG can be strongly enhanced by multiphoton resonances. This peculiar phenomenon would provide a way for controlling HHG in TMDCs and stimulate the realization of novel optical devices.
Recently, the celebrated Keldysh potential has been widely used to describe the Coulomb interaction of few-body complexes in monolayer transition-metal dichalcogenides. Using this potential to model charged excitons (trions), one finds a strong depen dence of the binding energy on whether the monolayer is suspended in air, supported on SiO$_2$, or encapsulated in hexagonal boron-nitride. However, empirical values of the trion binding energies show weak dependence on the monolayer configuration. This deficiency indicates that the description of the Coulomb potential is still lacking in this important class of materials. We address this problem and derive a new potential form, which takes into account the three atomic sheets that compose a monolayer of transition-metal dichalcogenides. The new potential self-consistently supports (i) the non-hydrogenic Rydberg series of neutral excitons, and (ii) the weak dependence of the trion binding energy on the environment. Furthermore, we identify an important trion-lattice coupling due to the phonon cloud in the vicinity of charged complexes. Neutral excitons, on the other hand, have weaker coupling to the lattice due to the confluence of their charge neutrality and small Bohr radius.
Just as photons are the quanta of light, plasmons are the quanta of orchestrated charge-density oscillations in conducting media. Plasmon phenomena in normal metals, superconductors and doped semiconductors are often driven by long-wavelength Coulomb interactions. However, in crystals whose Fermi surface is comprised of disconnected pockets in the Brillouin zone, collective electron excitations can also attain a shortwave component when electrons transition between these pockets. Here, we show that the band structure of monolayer transition-metal dichalcogenides gives rise to an intriguing mechanism through which shortwave plasmons are paired up with excitons. The coupling elucidates the origin for the optical side band that is observed repeatedly in monolayers of WSe$_2$ and WS$_2$ but not understood. The theory makes it clear why exciton-plasmon coupling has the right conditions to manifest itself distinctly only in the optical spectra of electron-doped tungsten-based monolayers.
113 - Alex Krasnok , Sergey Lepeshov , 2018
Two-dimensional transition metal dichalcogenides (TMDCs) have recently become attractive semiconductor materials for several optoelectronic applications, such as photodetection, light harvesting, phototransistors, light-emitting diodes, and lasers. T hey are particularly appealing because their bandgap lies in the visible and near-IR range, and they possess strong excitonic resonances, high oscillator strengths, and valley-selective response. Coupling these materials to optical nanocavities enhances the quantum yield of exciton emission, enabling advanced quantum optics and nanophotonic devices. Here, we review state-of-the-art advances on hybrid exciton-polariton structures based on monolayer TMDCs coupled to plasmonic and dielectric nanocavities. We first generally discuss the optical properties of 2D WS2, WSe2, MoS2 and MoSe2 materials, paying special attention to their energy and photoluminescence/absorption spectra, excitonic fine structure, and to the dynamics of exciton formation and valley depolarization. We then discuss light-matter interactions in hybrid exciton-polariton structures. Finally, we focus on weak and strong coupling regimes in monolayer TMDCs-based exciton-polariton systems, envisioning research directions and future opportunities based on this novel material platform.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا