ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced Transmission and Second Harmonic Generation from Subwavelength Slits on Metal Substrates

138   0   0.0 ( 0 )
 نشر من قبل Michael Scalora
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically investigate second harmonic generation that originates from the nonlinear, magnetic Lorentz force term from single and multiple apertures carved on thick, opaque metal substrates. The linear transmission properties of apertures on metal substrates have been previously studied in the context of the extraordinary transmission of light. The transmission process is driven by a number of physical mechanisms, whose characteristics and relative importance depend on the thickness of the metallic substrate, slit size, and slit separation. In this work we show that a combination of cavity effects and surface plasmon generation gives rise to enhanced second harmonic generation in the regime of extraordinary transmittance of the pump field. We have studied both forward and backward second harmonic generation conversion efficiencies as functions of the geometrical parameters, and how they relate to pump transmission efficiency. The resonance phenomenon is evident in the generated second harmonic signal, as conversion efficiency depends on the duration of incident pump pulse, and hence its bandwidth. Our results show that the excitation of tightly confined modes as well as the combination of enhanced transmission and nonlinear processes can lead to several potential new applications such as photo-lithography, scanning microscopy, and high-density optical data storage devices.

قيم البحث

اقرأ أيضاً

We present a concrete picture of spoof surface plasmons (SSPs) combined with cavity resonance to clarify the basic mechanism underlying extraordinary light transmission through metal films with subwavelength slits or holes. This picture may indicate a general mechanism of metallic nanostructure optics: When light is incident on a non-planar conducting surface, the free electrons cannot move homogeneously in response to the incident electric field, i.e., their movement can be impeded at the rough parts, forming inhomogeneous charge distributions. The oscillating charges/dipoles then emit photons (similar to Thomson scattering of x rays by oscillating electrons), and the interference between the photons may give rise to anomalous transmission, reflection or scattering.
We study second harmonic generation in nonlinear, GaAs gratings. We find large enhancement of conversion efficiency when the pump field excites the guided mode resonances of the grating. Under these circumstances the spectrum near the pump wavelength displays sharp resonances characterized by dramatic enhancements of local fields and favorable conditions for second harmonic generation, even in regimes of strong linear absorption at the harmonic wavelength. In particular, in a GaAs grating pumped at 1064nm, we predict second harmonic conversion efficiencies approximately five orders of magnitude larger than conversion rates achievable in either bulk or etalon structures of the same material.
153 - Yuqian Ye , Yi Jin 2009
y coating a cover layer with metallization of cut wire array, the transmission of transverse electric waves (TE; the electric field is parallel to the slits) through subwavelength slits in a thin metallic film is significantly enhanced. An 800-fold e nhanced transmission is obtained compared to the case without the cut wires. It is demonstrated that a TE incident wave is highly confined by the cut wires due to the excitation of the electric dipole-like resonance, and then effectively squeezed into and through the subwavelength slits.
Nano-resonator integrated with two-dimensional materials (e.g. transition metal dichalcogenides) have recently emerged as a promising nano-optoelectronic platform. Here we demonstrate resonatorenhanced second-harmonic generation (SHG) in tungsten dis elenide using a silicon photonic crystal cavity. By pumping the device with the ultrafast laser pulses near the cavity mode at the telecommunication wavelength, we observe a near visible SHG with a narrow linewidth and near unity linear polarization, originated from the coupling of the pump photon to the cavity mode. The observed SHG is enhanced by factor of ~200 compared to a bare monolayer on silicon. Our results imply the efficacy of cavity integrated monolayer materials for nonlinear optics and the potential of building a silicon-compatible second-order nonlinear integrated photonic platform.
We present a new theoretical approach to the study of second and third harmonic generation from metallic nanostructures and nanocavities filled with a nonlinear material, in the ultrashort pulse regime. We model the metal as a two-component medium, u sing the hydrodynamic model to describe free electrons, and Lorentz oscillators to account for core electron contributions to both the linear dielectric constant and to harmonic generation. The active nonlinear medium that may fill a metallic nanocavity, or be positioned between metallic layers in a stack, is also modeled using Lorentz oscillators and surface phenomena due to symmetry breaking are taken into account. We study the effects of incident TE- and TM-polarized fields and show that a simple re-examination of the basic equations reveals additional exploitable dynamical features of nonlinear frequency conversion in plasmonic nanostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا