ترغب بنشر مسار تعليمي؟ اضغط هنا

An Extended Volume of Fluid Method and its Application to Single Bubbles Rising in a Viscoelastic Liquid

179   0   0.0 ( 0 )
 نشر من قبل Matthias Niethammer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An extended volume of fluid method is developed for two-phase direct numerical simulations of systems with one viscoelastic and one Newtonian phase. A complete set of governing equations is derived by conditional volume-averaging of the local instantaneous bulk equations and interface jump conditions. The homogeneous mixture model is applied for the closure of the volume-averaged equations. An additional interfacial stress term arises in this volume-averaged formulation which requires special treatment in the finite-volume discretization on a general unstructured mesh. A novel numerical scheme is proposed for the second-order accurate finite-volume discretization of the interface stress term. We demonstrate that this scheme allows for a consistent treatment of the interface stress and the surface tension force in the pressure equation of the segregated solution approach. Because of the high Weissenberg number problem, an appropriate stabilization approach is applied to the constitutive equation of the viscoelastic phase to increase the robustness of the method at higher fluid elasticity. Direct numerical simulations of the transient motion of a bubble rising in a quiescent viscoelastic fluid are performed for the purpose of experimental code validation. The well-known jump discontinuity in the terminal bubble rise velocity when the bubble volume exceeds a critical value is captured by the method. The formulation of the interfacial stress together with the novel scheme for its discretization is found crucial for the quantitatively correct prediction of the jump discontinuity in the terminal bubble rise velocity.



قيم البحث

اقرأ أيضاً

We present accurate measurements of the relative motion and deformation of two large bubbles released consecutively in a quiescent liquid confined in a thin-gap cell. Though the second bubble injected is smaller, we observed that in all cases it acce lerates and catches up with the leading bubble. This acceleration is related to the wake of the leading bubble which also induces significant changes in the width and curvature of the trailing bubble. On the contrary, the velocity of the leading bubble is unaltered during the whole interaction and coalescence process. Shape adaptation of the two bubbles is observed just prior to coalescence. After pinch-off, the liquid film is drained at a constant velocity.
Wing flexibility plays an essential role in the aerodynamic performance of insects due to the considerable deformation of their wings during flight under the impact of inertial and aerodynamic forces. These forces come from the complex wing kinematic s of insects. In this study, both wing structural dynamics and flapping wing motion are taken into account to investigate the effect of wing deformation on the aerodynamic efficiency of a bumblebee in tethered flight. A fluid-structure interaction solver, coupling a mass-spring model for the flexible wing with a pseudo-spectral code solving the incompressible Navier-Stokes equations, is implemented for this purpose. We first consider a tethered bumblebee flying in laminar flow with flexible wings. Compared to the rigid model, flexible wings generate smaller aerodynamic forces but require much less power. Finally, the bumblebee model is put into a turbulent flow to investigate its influence on the force production of flexible wings.
In this work we consider theoretically the problem of a Newtonian droplet moving in an otherwise quiescent infinite viscoelastic fluid under the influence of an externally applied temperature gradient. The outer fluid is modelled by the Oldroyd-B equ ation, and the problem is solved for small Weissenberg and Capillary numbers in terms of a double perturbation expansion. We assume microgravity conditions and neglect the convective transport of energy and momentum. We derive expressions for the droplet migration speed and its shape in terms of the properties of both fluids. In the absence of shape deformation, the droplet speed decreases monotonically for sufficiently viscous inner fluids, while for fluids with a smaller inner-to-outer viscosity ratio, the droplet speed first increases and then decreases as a function of the Weissenberg number. For small but finite values of the Capillary number, the droplet speed behaves monotonically as a function of the applied temperature gradient for a fixed ratio of the Capillary and Weissenberg numbers. We demonstrate that this behaviour is related to the polymeric stresses deforming the droplet in the direction of its migration, while the associated changes in its speed are Newtonian in nature, being related to a change in the droplets hydrodynamic resistance and its internal temperature distribution. When compared to the results of numerical simulations, our theory exhibits a good predictive power for sufficiently small values of the Capillary and Weissenberg numbers.
Series of experiments on turbulent bubbly channel flows observed bubble clusters near the wall which can change large-scale flow structures. To gain insights into clustering mechanisms, we study the interaction of a pair of spherical bubbles rising i n a vertical channel through combined experiments and modeling. Experimental imaging identifies that pairwise bubbles of 1.0 mm diameter take two preferred configurations depending on their mutual distance: side-by-side positions for a short distance ($S<5$) and nearly inline, oblique positions for a long distance ($S>5$), where $S$ is the mutual distance normalized by the bubble radius. In the model, we formulate the motions of pairwise bubbles rising at $Re=O(100)$. Analytical drag and lift, and semi-empirical, spatio-temporal stochastic forcing are employed to represent the mean acceleration and the fluctuation due to turbulent agitation, respectively. The model is validated against the experiment through comparing Lagrangian statistics of the bubbles. Simulations using this model identify two distinct timescales of interaction dynamics which elucidate the preferred configurations. For pairs initially in-line, the trailing bubble rapidly escapes from the viscous wake of the leading bubble to take the oblique position. Outside of the wake, the trailing bubble travels on a curve-line path with a slower velocity driven by potential interaction and horizontally approaches the leading bubble to become side-by-side. Moreover, statistical analysis identifies that the combination of the wake and the agitation can significantly accelerate the side-by-side clustering of in-line pairs. These results indicate positive contributions of liquid viscosity and turbulence to the formation of bubble clusters.
A two-phase, low-Mach-number flow solver is proposed for variable-density liquid and gas with phase change. The interface is captured using a split Volume-of-Fluid method, which solves the advection of the reference phase, generalized for the case wh ere the liquid velocity is not divergence-free and both phases exchange mass. A sharp interface is identified by using PLIC. Mass conservation is achieved in the limit of incompressible liquid, but not with the liquid compressibility and mass exchange. This is a relevant modeling choice for two-phase mixtures at near-critical and supercritical pressure conditions for the liquid but away from the mixture critical temperature. Under this thermodynamic environment, the dissolution of lighter gas species into the liquid phase is enhanced and vaporization or condensation can occur simultaneously at different interface locations. The numerical challenge of solving two-phase, supercritical-pressure flows is greater than simpler two-phase solvers because: a) local phase equilibrium is imposed at each interface cell to determine temperature, composition, or surface tension coefficient; b) a real-fluid thermodynamic model is used to obtain fluid properties; and c) necessary phase-wise values for certain variables are obtained via extrapolation techniques. To alleviate the increased numerical cost, the pressure Poisson equation (PPE) used to solve the low-Mach-number flow is split into a constant-coefficient implicit part and a variable-coefficient explicit part. Thus, a Fast Fourier Transform method can be used for the PPE. Various verification tests are performed to show the accuracy and viability of the present approach. The growth of surface instabilities in a binary system composed of liquid n-decane and gaseous oxygen at supercritical pressures for n-decane is analyzed. Other features of supercritical liquid injection are also shown.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا