ﻻ يوجد ملخص باللغة العربية
Adaptive regularization methods pre-multiply a descent direction by a preconditioning matrix. Due to the large number of parameters of machine learning problems, full-matrix preconditioning methods are prohibitively expensive. We show how to modify full-matrix adaptive regularization in order to make it practical and effective. We also provide a novel theoretical analysis for adaptive regularization in non-convex optimization settings. The core of our algorithm, termed GGT, consists of the efficient computation of the inverse square root of a low-rank matrix. Our preliminary experiments show improved iteration-wise convergence rates across synthetic tasks and standard deep learning benchmarks, and that the more carefully-preconditioned steps sometimes lead to a better solution.
Matrix completion has attracted much interest in the past decade in machine learning and computer vision. For low-rank promotion in matrix completion, the nuclear norm penalty is convenient due to its convexity but has a bias problem. Recently, vario
This paper develops a new class of nonconvex regularizers for low-rank matrix recovery. Many regularizers are motivated as convex relaxations of the matrix rank function. Our new factor group-sparse regularizers are motivated as a relaxation of the n
We propose $ell_1$ norm regularized quadratic surface support vector machine models for binary classification in supervised learning. We establish their desired theoretical properties, including the existence and uniqueness of the optimal solution, r
Stochastic gradient descent (SGD) exhibits strong algorithmic regularization effects in practice, which has been hypothesized to play an important role in the generalization of modern machine learning approaches. In this work, we seek to understand t
We provide an online convex optimization algorithm with regret that interpolates between the regret of an algorithm using an optimal preconditioning matrix and one using a diagonal preconditioning matrix. Our regret bound is never worse than that obt