ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-existence of faithful isometric action of compact quantum groups on compact, connected Riemannian manifolds

248   0   0.0 ( 0 )
 نشر من قبل Debashish Goswami
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Suppose that a compact quantum group $clq$ acts faithfully on a smooth, compact, connected manifold $M$, i.e. has a $C^*$ (co)-action $alpha$ on $C(M)$, such that the action $alpha$ is isometric in the sense of cite{Goswami} for some Riemannian structure on $M$. We prove that $clq$ must be commutative as a $C^{ast}$ algebra i.e. $clqcong C(G)$ for some compact group $G$ acting smoothly on $M$. In particular, the quantum isometry group of $M$ (in the sense of cite{Goswami}) coincides with $C(ISO(M))$.



قيم البحث

اقرأ أيضاً

110 - Debashish Goswami 2018
Suppose that a compact quantum group ${mathcal Q}$ acts faithfully on a smooth, compact, connected manifold $M$, i.e. has a $C^{ast}$ (co)-action $alpha$ on $C(M)$, such that $alpha(C^infty(M)) subseteq C^infty(M, {mathcal Q})$ and the linear span of $alpha(C^infty(M))(1 otimes {mathcal Q})$ is dense in $C^infty(M, {mathcal Q})$ with respect to the Frechet topology. It was conjectured by the author quite a few years ago that ${mathcal Q}$ must be commutative as a $C^{ast}$ algebra i.e. ${mathcal Q} cong C(G)$ for some compact group $G$ acting smoothly on $M$. The goal of this paper is to prove the truth of this conjecture. A remarkable aspect of the proof is the use of probabilistic techniques involving Brownian stopping time.
A general form of contractive idempotent functionals on coamenable locally compact quantum groups is obtained, generalising the result of Greenleaf on contractive measures on locally compact groups. The image of a convolution operator associated to a contractive idempotent is shown to be a ternary ring of operators. As a consequence a one-to-one correspondence between contractive idempotents and a certain class of ternary rings of operators is established.
122 - D Goswami , S Joardar 2018
We give some sufficient conditions for the injectivity of actions of compact quantum groups on $C^{ast}$-algebra. As an application, we prove that any faithful smooth action by a compact quantum group on a compact smooth (not necessarily connected) m anifold is injective. A similar result is proved for actions on $C^{ast}$- algebras obtained by Rieffel-deformation of compact, smooth manifolds.
118 - Pekka Salmi , Adam Skalski 2016
Correspondence between idempotent states and expected right-invariant subalgebras is extended to non-coamenable, non-unimodular locally compact quantum groups; in particular left convolution operators are shown to automatically preserve the right Haar weight.
Suppose that a compact quantum group Q acts faithfully and isomet- rically (in the sense of [10]) on a smooth compact, oriented, connected Riemannian manifold M . If the manifold is stably parallelizable then it is shown that the compact quantum grou p is necessarily commutative as a C ast algebra i.e. Q = C(G) for some compact group G. Using this, it is also proved that the quantum isometry group of Rieffel deformation of such manifold M must be a Rieffel-Wang deformation of C(ISO(M))
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا