ترغب بنشر مسار تعليمي؟ اضغط هنا

A rigidity result for extensions of braided tensor C*-categories derived from compact matrix quantum groups

183   0   0.0 ( 0 )
 نشر من قبل Claudia Pinzari
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let G be a classical compact Lie group and G_mu the associated compact matrix quantum group deformed by a positive parameter mu (or a nonzero and real mu in the type A case). It is well known that the category Rep(G_mu) of unitary f.d. representations of G_mu is a braided tensor C*-category. We show that any braided tensor *-functor from Rep(G_mu) to another braided tensor C*-category with irreducible tensor unit is full if |mu| eq 1. In particular, the functor of restriction to the representation category of a proper compact quantum subgroup, cannot be made into a braided functor. Our result also shows that the Temperley--Lieb category generated by an object of dimension >2 can not be embedded properly into a larger category with the same objects as a braided tensor C*-subcategory.



قيم البحث

اقرأ أيضاً

We classify various types of graded extensions of a finite braided tensor category $cal B$ in terms of its $2$-categorical Picard groups. In particular, we prove that braided extensions of $cal B$ by a finite group $A$ correspond to braided monoidal $2$-functors from $A$ to the braided $2$-categorical Picard group of $cal B$ (consisting of invertible central $cal B$-module categories). Such functors can be expressed in terms of the Eilnberg-Mac~Lane cohomology. We describe in detail braided $2$-categorical Picard groups of symmetric fusion categories and of pointed braided fusion categories.
This paper addresses the problem of describing the structure of tensor C*-categories M with conjugates and irreducible tensor unit. No assumption on the existence of a braided symmetry or on amenability is made. Our assumptions are motivated by the r emark that these categories often contain non-full tensor C*-subcategories with conjugates and the same objects admitting an embedding into the Hilbert spaces. Such an embedding defines a compact quantum group by Woronowicz duality. An important example is the Temperley--Lieb category canonically contained in a tensor C*-category generated by a single real or pseudoreal object of dimension bigger than 2. The associated quantum groups are the universal orthogonal quantum groups of Wang and Van Daele. Our main result asserts that there is a full and faithful tensor functor from M to a category of Hilbert bimodule representations of the compact quantum group. In the classical case, these bimodule representations reduce to the G-equivariant Hermitian bundles over compact homogeneous G-spaces, with G a compact group. Our structural results shed light on the problem of whether there is an embedding functor of M into the Hilbert spaces. We show that this is related to the problem of whether a classical compact Lie group can act ergodically on a non-type I von Neumann algebra. In particular, combining this with a result of Wassermann shows that an embedding exists if M is generated by a pseudoreal object of dimension 2.
The spectral functor of an ergodic action of a compact quantum group G on a unital C*-algebra is quasitensor, in the sense that the tensor product of two spectral subspaces is isometrically contained in the spectral subspace of the tensor product rep resentation, and the inclusion maps satisfy natural properties. We show that any quasitensor *-functor from Rep(G) to the category of Hilbert spaces is the spectral functor of an ergodic action of G on a unital C*-algebra. As an application, we associate an ergodic G-action on a unital C*-algebra to an inclusion of Rep(G) into an abstract tensor C*-category. If the inclusion arises from a quantum subgroup of G, the associated G-system is just the quantum quotient space. If G is a group and the category has permutation symmetry, the associated system is commutative, and therefore isomorphic to the classical quotient space by a closed subgroup of $G$. If a tensor C*-category has a Hecke symmetry making an object of dimension d and q-quantum determinant one then there is an ergodic action of S_qU(d) on a unital C*-algebra, having the spaces of intertwiners from the tensor unit to powers of the object as its spectral subspaces. The special case od S_qU(2) is discussed.
122 - D Goswami , S Joardar 2018
We give some sufficient conditions for the injectivity of actions of compact quantum groups on $C^{ast}$-algebra. As an application, we prove that any faithful smooth action by a compact quantum group on a compact smooth (not necessarily connected) m anifold is injective. A similar result is proved for actions on $C^{ast}$- algebras obtained by Rieffel-deformation of compact, smooth manifolds.
Suppose that a compact quantum group Q acts faithfully and isomet- rically (in the sense of [10]) on a smooth compact, oriented, connected Riemannian manifold M . If the manifold is stably parallelizable then it is shown that the compact quantum grou p is necessarily commutative as a C ast algebra i.e. Q = C(G) for some compact group G. Using this, it is also proved that the quantum isometry group of Rieffel deformation of such manifold M must be a Rieffel-Wang deformation of C(ISO(M))
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا