ﻻ يوجد ملخص باللغة العربية
We present a new theoretical approach, unrestricted self-energy embedding theory (USEET) that is a Greens function embedding theory used to study problems in which an open, embedded system exchanges electrons with the environment. USEET has a high potential to be used in studies of strongly correlated systems with odd number of electrons and open shell systems such as transition metal complexes important in inorganic chemistry. In this paper, we show that USEET results agree very well with common quantum chemistry methods while avoiding typical bottlenecks present in these method.
Ab initio quantum chemistry calculations for systems with large active spaces are notoriously difficult and cannot be successfully tackled by standard methods. In this letter, we generalize a Greens function QM/QM embedding method called self-energy
We present an implementation of the self-energy embedding theory (SEET) for periodic systems and provide a fully self-consistent embedding solution for a simple realistic periodic problem - 1D crystalline hydrogen - that displays many of the features
Recently a novel approach to find approximate exchange-correlation functionals in density-functional theory (DFT) was presented (U. Mordovina et. al., JCTC 15, 5209 (2019)), which relies on approximations to the interacting wave function using densit
We present the first implementation of a density matrix renormalization group algorithm embedded in an environment described by density functional theory. The frozen density embedding scheme is used with a freeze-and-thaw strategy for a self-consiste
Employing a local formula for the electron-electron interaction energy, we derive a self-consistent approximation for the total energy of a general $N$-electron system. Our scheme works as a local variant of the Thomas-Fermi approximation and yields