ﻻ يوجد ملخص باللغة العربية
Ab initio quantum chemistry calculations for systems with large active spaces are notoriously difficult and cannot be successfully tackled by standard methods. In this letter, we generalize a Greens function QM/QM embedding method called self-energy embedding theory (SEET) that has the potential to be successfully employed to treat large active spaces. In generalized SEET, active orbitals are grouped into intersecting groups of few orbitals allowing us to perform multiple parallel calculations yielding results comparable to the full active space treatment. We examine generalized SEET on a series of examples and discuss a hierarchy of systematically improvable approximations.
We present a new theoretical approach, unrestricted self-energy embedding theory (USEET) that is a Greens function embedding theory used to study problems in which an open, embedded system exchanges electrons with the environment. USEET has a high po
Recently a novel approach to find approximate exchange-correlation functionals in density-functional theory (DFT) was presented (U. Mordovina et. al., JCTC 15, 5209 (2019)), which relies on approximations to the interacting wave function using densit
We present the first implementation of a density matrix renormalization group algorithm embedded in an environment described by density functional theory. The frozen density embedding scheme is used with a freeze-and-thaw strategy for a self-consiste
We present an implementation of the self-energy embedding theory (SEET) for periodic systems and provide a fully self-consistent embedding solution for a simple realistic periodic problem - 1D crystalline hydrogen - that displays many of the features
We present a matrix-product state (MPS)-based quadratically convergent density-matrix renormalization group self-consistent-field (DMRG-SCF) approach. Following a proposal by Werner and Knowles (JCP 82, 5053, (1985)), our DMRG-SCF algorithm is based