ﻻ يوجد ملخص باللغة العربية
Spin-orbit coupling (SOC) in graphene can be greatly enhanced by proximity coupling it to transition metal dichalcogenides (TMDs) such as WSe2. We find that the strength of the acquired SOC in graphene depends on the stacking order of the heterostructures when using hexagonal boron nitride (h-BN) as the capping layer, i.e., SiO2/graphene/WSe2/h-BN exhibiting stronger SOC than SiO2/WSe2/graphene/h-BN. We utilize photoluminescence (PL) as an indicator to characterize the interaction between graphene and monolayer WSe2 grown by chemical vapor deposition. We observe much stronger PL quenching in the SiO2/graphene/WSe2/h-BN stack than in the SiO2/WSe2/graphene/h-BN stack, and correspondingly a much larger weak antilocalization (WAL) effect or stronger induced SOC in the former than in the latter. We attribute these two effects to the interlayer distance between graphene and WSe2, which depends on whether graphene is in immediate contact with h-BN. Our observations and hypothesis are further supported by first-principles calculations which reveal a clear difference in the interlayer distance between graphene and WSe2 in these two stacks.
We study proximity-induced spin-orbit coupling (SOC) in bilayer graphene/few-layer WSe2 heterostructure devices. Contact mode atomic force microscopy (AFM) cleaning yields ultra-clean interfaces and high-mobility devices. In a perpendicular magnetic
The weak intrinsic spin-orbit coupling in graphene can be greatly enhanced by proximity coupling. Here we report on the proximity-induced spin-orbit coupling in graphene transferred by hexagonal boron nitride (hBN) onto the topological insulator Bi$_
Van der Waals heterostructures composed of multiple few layer crystals allow the engineering of novel materials with predefined properties. As an example, coupling graphene weakly to materials with large spin orbit coupling (SOC) allows to engineer a
We report that the {pi}-electrons of graphene can be spin-polarized to create a phase with a significant spin-orbit gap at the Dirac point (DP) using a graphene-interfaced topological insulator hybrid material. We have grown epitaxial Bi2Te2Se (BTS)
Recently a paper of Klimovskikh et al. was published presenting experimental and theoretical analysis of the graphene/Pb/Pt(111) system. The authors investigate the crystallographic and electronic structure of this graphene-based system by means of L