ﻻ يوجد ملخص باللغة العربية
Recently a paper of Klimovskikh et al. was published presenting experimental and theoretical analysis of the graphene/Pb/Pt(111) system. The authors investigate the crystallographic and electronic structure of this graphene-based system by means of LEED, ARPES, and spin-resolved PES of the graphene $pi$ states in the vicinity of the Dirac point of graphene. The authors of this paper demonstrate that an energy gap of approx. 200 meV is opened in the spectral function of graphene directly at the Dirac point of graphene and spin-splitting of 100 meV is detected for the upper part of the Dirac cone. On the basis of the spin-resolved photoelectron spectroscopy measurements of the region around the gap the authors claim that these splittings are of a spin-orbit nature and that the observed spin structure confirms the observation of the quantum spin Hall state in graphene, proposed in earlier theoretical works. Here we will show that careful systematic analysis of the experimental data presented in this manuscript is needed and their interpretation require more critical consideration for making such conclusions. Our analysis demonstrates that the proposed effects and interpretations are questionable and require further more careful experiments.
Spin-orbit coupling (SOC) in graphene can be greatly enhanced by proximity coupling it to transition metal dichalcogenides (TMDs) such as WSe2. We find that the strength of the acquired SOC in graphene depends on the stacking order of the heterostruc
Spin-orbit coupling (SOC) is essential in understanding the properties of 5d transition metal compounds, whose SOC value is large and almost comparable to other key parameters. Over the past few years, there have been numerous studies on the SOC-driv
The comment by O. Entin-Wohlman, A. Aharony, and Y. Utsumi, on our paper S. Varela, I. Zambrano, B. Berche, V. Mujica, and E. Medina, Phys. Rev. B 101, 241410(R) (2020) makes a few points related to the validity of our model, especially in the light
Understanding the nature of the interaction at the graphene/metal interfaces is the basis for graphene-based electron- and spin-transport devices. Here we investigate the hybridization between graphene- and metal-derived electronic states by studying
Many of the exotic properties proposed to occur in graphene rely on the possibility of increasing the spin orbit coupling (SOC). By combining analytical and numerical tight binding calculations, in this work we study the SOC induced by heavy adatoms