ﻻ يوجد ملخص باللغة العربية
Using emph{RXTE}, emph{Chandra}, emph{XMM-Newton} and emph{Swift} observations, we for the first time construct the power spectra and torque noise strengths of magnetars. For some of the sources, we measure strong red noise on timescales months to years which might be a consequence of their outbursts. We compare noise strengths of magnetars with those of radio pulsars by investigating possible correlations of noise strengths with spin-down rate, magnetic field and age. Using these correlations, we find that magnetar noise strengths are obeying similar trends with radio pulsars. On the contrary, we do not find any correlation between noise strength and X-ray luminosity which was seen in accretion powered pulsars. Our findings suggest that the noise behaviour of magnetars resembles that of radio pulsars but they possess higher noise levels likely due to their stronger magnetic fields.
Magnetars are young and highly magnetized neutron stars which display a wide array of X-ray activity including short bursts, large outbursts, giant flares and quasi-periodic oscillations, often coupled with interesting timing behavior including enhan
We investigated the radio spectra of two magnetars, PSR J1622$-$4950 and 1E 1547.0$-$5408, using observations from the Australia Telescope Compact Array and the Atacama Large Millimeter/submillimeter Array taken in 2017. Our observations of PSR J1622
Two classes of X-ray/$gamma$-ray sources, the Soft Gamma Repeaters and the Anomalous X-ray Pulsars have been identified with isolated, slowly spinning magnetars, neutron stars whose emission draws energy from their extremely strong magnetic field ($s
We represent noise strength analysis of Anomalous X-Ray Pulsars (AXPs) 4U 0142+61, 1RXS J170849.9-400910, 1E 1841-045, 1E 2259+586 and Soft Gamma Repeaters (SGRs) SGR J1833-0832, SWIFT J1822.3-1606 and SWIFT J1834.9-0846 together with the X-Ray binar
Magnetars are the most luminous compact objects in the stellar mass range observed in the Milky Way, with giant flares of hard X-ray power ~10^45 erg/sec being detected from three soft gamma repeaters in the Galactic neighborhood. Periodicity seen in