ترغب بنشر مسار تعليمي؟ اضغط هنا

High Frequency Radio Observations of Two Magnetars, PSR J1622$-$4950 and 1E 1547.0$-$5408

95   0   0.0 ( 0 )
 نشر من قبل Che-Yen Chu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the radio spectra of two magnetars, PSR J1622$-$4950 and 1E 1547.0$-$5408, using observations from the Australia Telescope Compact Array and the Atacama Large Millimeter/submillimeter Array taken in 2017. Our observations of PSR J1622$-$4950 show a steep spectrum with a spectral index of $-$1.3 $pm$ 0.2 in the range of 5.5-45 GHz during its re-activating X-ray outburst in 2017. By comparing the data taken at different epochs, we found significant enhancement in the radio flux density. The spectrum of 1E 1547.0$-$5408 was inverted in the range of 43-95 GHz, suggesting a spectral peak at a few hundred gigahertz. Moreover, we obtained the X-ray and radio data of radio magnetars, PSR J1622$-$4950 and SGR J1745$-$2900, from literature and found two interesting properties. First, radio emission is known to be associated with X-ray outburst but has different evolution. We further found that the rising time of the radio emission is much longer than that of the X-ray during the outburst. Second, the radio magnetars may have double peak spectra at a few GHz and a few hundred GHz. This could indicate that the emission mechanism is different in the cm and the sub-mm bands. These two phenomenons could provide a hint to understand the origin of radio emission and its connection with the X-ray properties.



قيم البحث

اقرأ أيضاً

We report on 2.4 yr of radio timing measurements of the magnetar PSR J1622$-$4950 using the Parkes telescope, between 2011 November and 2014 March. During this period the torque on the neutron star (inferred from the rotational frequency derivative) varied greatly, though much less erratically than in the 2 yr following its discovery in 2009. During the last year of our measurements the frequency derivative decreased in magnitude monotonically by 20%, to a value of $-1.3times10^{-13}$ s$^{-2}$, a factor of 8 smaller than when discovered. The flux density continued to vary greatly during our monitoring through 2014 March, reaching a relatively steady low level after late 2012. The pulse profile varied secularly on a similar timescale as the flux density and torque. A relatively rapid transition in all three properties is evident in early 2013. After PSR J1622$-$4950 was detected in all of our 87 observations up to 2014 March, we did not detect the magnetar in our resumed monitoring starting in 2015 January and have not detected it in any of the 30 observations done through 2016 September.
We present multi-wavelength observations of the radio magnetar PSR J1622-4950 and its environment. Observations of PSR J1622-4950 with Chandra (in 2007 and 2009) and XMM (in 2011) show that the X-ray flux of PSR J1622-4950 has decreased by a factor o f ~50 over 3.7 years, decaying exponentially with a characteristic time of 360 +/- 11 days. This behavior identifies PSR J1622-4950 as a possible addition to the small class of transient magnetars. The X-ray decay likely indicates that PSR J1622-4950 is recovering from an X-ray outburst that occurred earlier in 2007, before the 2007 Chandra observations. Observations with the Australia Telescope Compact Array show strong radio variability, including a possible radio flaring event at least one and a half years after the 2007 X-ray outburst that may be a direct result of this X-ray event. Radio observations with the Molonglo Observatory Synthesis Telescope reveal that PSR J1622-4950 is 8 southeast of a diffuse radio arc, G333.9+0.0, which appears non-thermal in nature and which could possibly be a previously undiscovered supernova remnant. If G333.9+0.0 is a supernova remnant then the estimates of its size and age, combined with the close proximity and reasonable implied velocity of PSR J1622-4950, suggests that these two objects could be physically associated.
131 - F. Camilo 2008
We have investigated the radio emission from the anomalous X-ray pulsar 1E 1547.0-5408 (PSR J1550-5418) using the Parkes telescope and the Australia Telescope Compact Array. The flux density of the pulsar is roughly the same between 1.4 and 45 GHz, b ut shows time variability. The radiation is nearly 100% linearly polarized between frequencies of 45 and 3.2 GHz, but from 2.3 to 1.4 GHz it becomes increasingly more depolarized. The rotation measure of -1860 rad/m^2 is the largest for any known pulsar, and implies an average magnetic field strength along the line of sight of 2.7 microG. The pulse profiles are circularly polarized at all frequencies observed, more so at lower frequencies, at the ~15% level. The observed swing of the position angle of linear polarization as a function of pulse phase suggests that in this neutron star the rotation and magnetic axes are nearly aligned, and that its radio emission is only detectable within a small solid angle. Timing measurements indicate that the period derivative of this 2 s pulsar has increased by nearly 40% in a 6-month period. The flat spectrum and variability in flux density and pulse profiles are reminiscent of the properties of XTE J1810-197, the only other known radio-emitting magnetar, and are anomalous by comparison with those of ordinary radio pulsars.
We present the evolution of the X-ray emission properties of the magnetar 1E 1547.0-5408 since February 2004 over a time period covering three outbursts. We analyzed new and archival observations taken with the Swift, NuSTAR, Chandra and XMM-Newton X -ray satellites. The source has been observed at a relatively steady soft X-ray flux of $approx$ 10$^{-11}$ erg cm$^{-2}$ s$^{-1}$ (0.3-10 keV) over the last 9 years, which is about an order of magnitude fainter than the flux at the peak of the last outburst in 2009, but a factor of $sim$ 30 larger than the level in 2006. The broad-band spectrum extracted from two recent NuSTAR observations in April 2016 and February 2019 showed a faint hard X-ray emission up to $sim$ 70 keV. Its spectrum is adequately described by a flat power law component, and its flux is $sim$ $7 times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$ (10-70 keV), that is a factor of $sim$ 20 smaller than at the peak of the 2009 outburst. The hard X-ray spectral shape has flattened significantly in time, which is at variance with the overall cooling trend of the soft X-ray component. The pulse profile extracted from these NuSTAR pointings displays variability in shape and amplitude with energy (up to $approx$ 25 keV). Our analysis shows that the flux of 1E 1547.0-5408 is not yet decaying to the 2006 level and that the source has been lingering in a stable, high-intensity state for several years. This might suggest that magnetars can hop among distinct persistent states that are probably connected to outburst episodes and that their persistent thermal emission can be almost entirely powered by the dissipation of currents in the corona.
New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100x larger than during its dormant state. The X-ray flux one month after reactivation was at least 800x larger than during quiescence, and has been decaying exponentially on a 111+/-19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا