ﻻ يوجد ملخص باللغة العربية
Magnetars are the most luminous compact objects in the stellar mass range observed in the Milky Way, with giant flares of hard X-ray power ~10^45 erg/sec being detected from three soft gamma repeaters in the Galactic neighborhood. Periodicity seen in magnetar persistent emission, and a distinctive spin-down lengthening of this period, have driven the paradigm that strongly-magnetized neutron stars constitute these fascinating sources. The steady X-ray emission includes both thermal atmospheric components, and magnetospheric contributions that are manifested as hard X-ray tails. This paper addresses observational and theoretical elements pertinent to the steady hard X-ray emission of magnetars, focusing on dissipative processes in their magnetospheres, and elements of Comptonization and polarization. It also discusses the action and possible signatures of the exotic and fundamental QED mechanisms of photon splitting and magnetic pair creation, and the quest for their observational vindication.
We investigate the conditions for radio emission in rotating and oscillating magnetars, by focusing on the main physical processes determining the position of their death-lines in the P-dot{P} diagram, i.e. of those lines that separate the regions wh
Magnetars are young and highly magnetized neutron stars which display a wide array of X-ray activity including short bursts, large outbursts, giant flares and quasi-periodic oscillations, often coupled with interesting timing behavior including enhan
We represent noise strength analysis of Anomalous X-Ray Pulsars (AXPs) 4U 0142+61, 1RXS J170849.9-400910, 1E 1841-045, 1E 2259+586 and Soft Gamma Repeaters (SGRs) SGR J1833-0832, SWIFT J1822.3-1606 and SWIFT J1834.9-0846 together with the X-Ray binar
Two classes of X-ray/$gamma$-ray sources, the Soft Gamma Repeaters and the Anomalous X-ray Pulsars have been identified with isolated, slowly spinning magnetars, neutron stars whose emission draws energy from their extremely strong magnetic field ($s
We consider magnetospheric structure of rotating neutron stars with internally twisted axisymmetric magnetic fields. The twist-induced and rotation-induced toroidal magnetic fields align/counter-align in different hemispheres. Using analytical and nu