ﻻ يوجد ملخص باللغة العربية
We prove that any two-pass graph streaming algorithm for the $s$-$t$ reachability problem in $n$-vertex directed graphs requires near-quadratic space of $n^{2-o(1)}$ bits. As a corollary, we also obtain near-quadratic space lower bounds for several other fundamental problems including maximum bipartite matching and (approximate) shortest path in undirected graphs. Our results collectively imply that a wide range of graph problems admit essentially no non-trivial streaming algorithm even when two passes over the input is allowed. Prior to our work, such impossibility results were only known for single-pass streaming algorithms, and the best two-pass lower bounds only ruled out $o(n^{7/6})$ space algorithms, leaving open a large gap between (trivial) upper bounds and lower bounds.
We present new lower bounds that show that a polynomial number of passes are necessary for solving some fundamental graph problems in the streaming model of computation. For instance, we show that any streaming algorithm that finds a weighted minimum
We prove a lower bound on the space complexity of two-pass semi-streaming algorithms that approximate the maximum matching problem. The lower bound is parameterized by the density of Ruzsa-Szemeredi graphs: * Any two-pass semi-streaming algorithm f
We study space-pass tradeoffs in graph streaming algorithms for parameter estimation and property testing problems such as estimating the size of maximum matchings and maximum cuts, weight of minimum spanning trees, or testing if a graph is connected
We consider the problem of testing graph cluster structure: given access to a graph $G=(V, E)$, can we quickly determine whether the graph can be partitioned into a few clusters with good inner conductance, or is far from any such graph? This is a ge
We give tight cell-probe bounds for the time to compute convolution, multiplication and Hamming distance in a stream. The cell probe model is a particularly strong computational model and subsumes, for example, the popular word RAM model. We first