ﻻ يوجد ملخص باللغة العربية
We present a probabilistic framework for studying adversarial attacks on discrete data. Based on this framework, we derive a perturbation-based method, Greedy Attack, and a scalable learning-based method, Gumbel Attack, that illustrate various tradeoffs in the design of attacks. We demonstrate the effectiveness of these methods using both quantitative metrics and human evaluation on various state-of-the-art models for text classification, including a word-based CNN, a character-based CNN and an LSTM. As as example of our results, we show that the accuracy of character-based convolutional networks drops to the level of random selection by modifying only five characters through Greedy Attack.
Deep neural networks are vulnerable to adversarial examples that are crafted by imposing imperceptible changes to the inputs. However, these adversarial examples are most successful in white-box settings where the model and its parameters are availab
In this work we propose Energy Attack, a transfer-based black-box $L_infty$-adversarial attack. The attack is parameter-free and does not require gradient approximation. In particular, we first obtain white-box adversarial perturbations of a surrogat
The deep neural network is vulnerable to adversarial examples. Adding imperceptible adversarial perturbations to images is enough to make them fail. Most existing research focuses on attacking image classifiers or anchor-based object detectors, but t
Graph deep learning models, such as graph convolutional networks (GCN) achieve remarkable performance for tasks on graph data. Similar to other types of deep models, graph deep learning models often suffer from adversarial attacks. However, compared
Deep neural networks (DNNs) are vulnerable to adversarial examples, which are crafted by adding imperceptible perturbations to inputs. Recently different attacks and strategies have been proposed, but how to generate adversarial examples perceptually