ﻻ يوجد ملخص باللغة العربية
We report on quantum emission from Pb-related color centers in diamond following ion implantation and high temperature vacuum annealing. First-principles calculations predict a negatively-charged Pb-vacancy center in a split-vacancy configuration, with a zero-phonon transition around 2.3 eV. Cryogenic photoluminescence measurements performed on emitters in nanofabricated pillars reveal several transitions, including a prominent doublet near 520 nm. The splitting of this doublet, 2 THz, exceeds that reported for other group-IV centers. These observations are consistent with the PbV center, which is expected to have the combination of narrow optical transitions and stable spin states, making it a promising system for quantum network nodes.
Photon-mediated interactions between quantum systems are essential for realizing quantum networks and scalable quantum information processing. We demonstrate such interactions between pairs of silicon-vacancy (SiV) color centers strongly coupled to a
The controlled creation of defect center---nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here, we demonstrate dire
We characterize the coherent dynamics of a two-level quantum emitter driven by a pair of symmetrically-detuned phase-locked pulses. The promise of dichromatic excitation is to spectrally isolate the excitation laser from the quantum emission, enablin
We apply our recently developed theory of frequency-filtered and time-resolved N-photon correlations to study the two-photon spectra of a variety of systems of increasing complexity: single mode emitters with two limiting statistics (one harmonic osc
We study a disordered ensemble of quantum emitters collectively coupled to a lossless cavity mode. The latter is found to modify the localization properties of the dark eigenstates, which exhibit a character of being localized on multiple, noncontigu