ﻻ يوجد ملخص باللغة العربية
The controlled creation of defect center---nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here, we demonstrate direct, maskless creation of atom-like single silicon-vacancy (SiV) centers in diamond nanostructures via focused ion beam implantation with $sim 32$ nm lateral precision and $< 50$ nm positioning accuracy relative to a nanocavity. Moreover, we determine the Si+ ion to SiV center conversion yield to $sim 2.5%$ and observe a 10-fold conversion yield increase by additional electron irradiation. We extract inhomogeneously broadened ensemble emission linewidths of $sim 51$ GHz, and close to lifetime-limited single-emitter transition linewidths down to $126 pm13$ MHz corresponding to $sim 1.4$-times the natural linewidth. This demonstration of deterministic creation of optically coherent solid-state single quantum systems is an important step towards development of scalable quantum optical devices.
Nanodiamonds (NDs) hosting optically active defects are an important technical material for applications in quantum sensing, biological imaging, and quantum optics. The negatively charged silicon vacancy (SiV) defect is known to fluoresce in molecula
We report on quantum emission from Pb-related color centers in diamond following ion implantation and high temperature vacuum annealing. First-principles calculations predict a negatively-charged Pb-vacancy center in a split-vacancy configuration, wi
Recent advances in focused ion beam technology have enabled high-resolution, direct-write nanofabrication using light ions. Studies with light ions to date have, however, focused on milling of materials where sub-surface ion beam damage does not inhi
Photon-mediated interactions between quantum systems are essential for realizing quantum networks and scalable quantum information processing. We demonstrate such interactions between pairs of silicon-vacancy (SiV) color centers strongly coupled to a
While coherently-driven Kerr microcavities have rapidly matured as a platform for frequency comb formation, such microresonators generally possess weak Kerr coefficients; consequently, triggering comb generation requires millions of photons to be cir