ﻻ يوجد ملخص باللغة العربية
We study a disordered ensemble of quantum emitters collectively coupled to a lossless cavity mode. The latter is found to modify the localization properties of the dark eigenstates, which exhibit a character of being localized on multiple, noncontiguous sites. We denote such states as semi-localized and characterize them by means of standard localization measures. We show that those states can very efficiently contribute to coherent energy transport. Our paper underlines the important role of dark states in systems with strong light-matter coupling.
We study nonlinear cavity arrays where the particle relaxation rate in each cavity increases with the excitation number. We show that coherent parametric inputs can drive such arrays into states with commensurate filling that form non-equilibrium ana
We show that exciton-type transport in certain materials can be dramatically modified by their inclusion in an optical cavity: the modification of the electromagnetic vacuum mode structure introduced by the cavity leads to transport via delocalized p
We investigate theoretically the coupling of a cavity mode to a continuous distribution of emitters. We discuss the influence of the emitters inhomogeneous broadening on the existence and on the coherence properties of the polaritonic peaks. We find
We study the temporal correlations of the field emitted by an electromagnetic resonator coupled to a mesoscopic number of two-level emitters that are incoherently pumped by a weak external drive. We solve the master equation of the system for increas
We discuss a hybrid quantum system where a dielectric membrane situated inside an optical cavity is coupled to a distant atomic ensemble trapped in an optical lattice. The coupling is mediated by the exchange of sideband photons of the lattice laser,