ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of azimuthal phase mask coronagraphs

85   0   0.0 ( 0 )
 نشر من قبل Francois Henault
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Francois Henault




اسأل ChatGPT حول البحث

In this paper is presented an analytical study of the azimuthal phase-mask coronagraph currently envisioned for detecting and characterizing extra-solar planets. Special emphasis is put on the physical and geometrical interpretation of the mathematical development. Two necessary conditions are defined for achieving full extinction in the pupil plane of the coronagraph, stating that the complex amplitude generated by the phase mask should have zero average, on the one hand, and its Fourier coefficients should only be even, on the other hand. Examples of such phase functions are reviewed, including optical vortices, four-quadrant phase masks, and azimuthal cosine phase functions. Hints for building more sophisticated functions are also given. Finally, a simplified expression of light leaks due to mask imperfection is proposed

قيم البحث

اقرأ أيضاً

77 - M. NDiaye , K. Dohlen , S. Cuevas 2011
For direct imaging of exoplanets, a stellar coronagraph helps to remove the image of an observed bright star by attenuating the diffraction effects caused by the telescope aperture of diameter D. The Dual Zone Phase Mask (DZPM) coronagraph constitute s a promising concept since it theoretically offers a small inner working angle (IWA sim lambda_0/D), good achromaticity and high starlight rejection, typically reaching a 1e6 contrast at 5 lambda_0/D from the star over a spectral bandwidth Deltalambda/lambda_0 of 25% (similar to H-band). This last value proves to be encouraging for broadband imaging of young and warm Jupiter-like planets. Contrast levels higher than 1e6 are however required for the observation of older and/or less massive companions over a finite spectral bandwidth. An achromatization improvement of the DZPM coronagraph is therefore mandatory to reach such performance. In its design, the DZPM coronagraph uses a grey (or achromatic) apodization. We propose to replace it by a colored apodization to increase the performance of this coronagraphic system over a large spectral range. This innovative concept, called Colored Apodizer Phase Mask (CAPM) coronagraph, is defined with some design parameters optimized to reach the best contrast in the exoplanet search area. Once this done, we study the performance of the CAPM coronagraph in the presence of different errors to evaluate the sensitivity of our concept. A 2.5 mag contrast gain is estimated from the performance provided by the CAPM coronagraph with respect to that of the DZPM coronagraph. A 2.2e-8 intensity level at 5 lambda_0/D separation is then theoretically achieved with the CAPM coronagraph in the presence of a clear circular aperture and a 25% bandwidth. In addition, our studies show that our concept is less sensitive to low than high-order aberrations for a given value of rms wavefront errors.
The design of liquid-crystal diffractive phase plate coronagraphs for ground-based and space-based high-contrast imaging systems is limited by the trade-off between spectral bandwidth and polarization leakage. We demonstrate that by combining phase p atterns with a polarization grating (PG) pattern directly followed by one or several separate PGs, we can suppress the polarization leakage terms by additional orders of magnitude by diffracting them out of the beam. textcolor{black}{Using two PGs composed of a single-layer liquid crystal structure in the lab, we demonstrate a leakage suppression of more than an order of magnitude over a bandwidth of 133 nm centered around 532 nm. At this center wavelength we measure a leakage suppression of three orders of magnitude.} Furthermore, simulations indicate that a combination of two multi-layered liquid-crystal PGs can suppress leakage to $<10^{-5}$ for 1-2.5 $mu$m and $<10^{-10}$ for 650-800 nm. We introduce multi-grating solutions with three or more gratings that can be designed to have no separation of the two circular polarization states, and offer even deeper suppression of polarization leakage. We present simulations of a triple-grating solution that has $<10^{-10}$ leakage on the first Airy ring from 450 nm to 800 nm. We apply the double-grating concept to the Vector-Vortex coronagraph of charge 4, and demonstrate in the lab that polarization leakage no longer limits the on-axis suppression for ground-based contrast levels. Lastly, we report on the successful installation and first-light results of a double-grating vector Apodizing Phase Plate pupil-plane coronagraph installed at the Large Binocular Telescope. We discuss the implications of these new coronagraph architectures for high-contrast imaging systems on the ground and in space.
Phase-mask coronagraphs are known to provide high contrast imaging capabilities while preserving a small inner working angle, which allows searching for exoplanets or circumstellar disks with smaller telescopes or at longer wavelengths. The AGPM (Ann ular Groove Phase Mask, Mawet et al. 2005) is an optical vectorial vortex coronagraph (or vector vortex) induced by a rotationally symmetric subwavelength grating (i.e. with a period smaller than {lambda}/n, {lambda} being the observed wavelength and n the refractive index of the grating substrate). In this paper, we present our first mid- infrared AGPM prototypes imprinted on a diamond substrate. We firstly give an extrapolation of the expected coronagraph performances in the N-band (~10 {mu}m), and prospects for down-scaling the technology to the most wanted L- band (~3.5 {mu}m). We then present the manufacturing and measurement results, using diamond-optimized microfabrication techniques such as nano-imprint lithography (NIL) and reactive ion etching (RIE). Finally, the subwavelength grating profile metrology combines surface metrology (scanning electron microscopy, atomic force microscopy, white light interferometry) with diffractometry on an optical polarimetric bench and cross correlation with theoretical simulations using rigorous coupled wave analysis (RCWA).
The segmented coronagraph design and analysis (SCDA) study is a coordinated effort, led by Stuart Shaklan (JPL) and supported by NASAs Exoplanet Exploration Program (ExEP), to provide efficient coronagraph design concepts for exoplanet imaging with f uture segmented aperture space telescopes. This document serves as an update on the apodized vortex coronagraph designs devised by the Caltech/JPL SCDA team. Apodized vortex coronagraphs come in two flavors, where the apodization is achieved either by use of 1) a gray-scale semi-transparent pupil mask or 2) a pair of deformable mirrors in series. Each approach has attractive benefits. This document presents a comprehensive review of the former type. Future theoretical investigations will further explore the use of deformable mirrors for apodization.
104 - M. NDiaye , K. Dohlen , T. Fusco 2013
Context. Several exoplanet direct imaging instruments will soon be in operation. They use an extreme adaptive optics (XAO) system to correct the atmospheric turbulence and provide a highly-corrected beam to a near-infrared (NIR) coronagraph for starl ight suppression. The performance of the coronagraph is however limited by the non-common path aberrations (NCPA) due to the differential wavefront errors existing between the visible XAO sensing path and the NIR science path, leading to residual speckles in the coronagraphic image. Aims. Several approaches have been developed in the past few years to accurately calibrate the NCPA, correct the quasi-static speckles and allow the observation of exoplanets at least 1e6 fainter than their host star. We propose an approach based on the Zernike phase-contrast method for the measurements of the NCPA between the optical path seen by the visible XAO wavefront sensor and that seen by the near-IR coronagraph. Methods. This approach uses a focal plane phase mask of size {lambda}/D, where {lambda} and D denote the wavelength and the telescope aperture diameter, respectively, to measure the quasi-static aberrations in the upstream pupil plane by encoding them into intensity variations in the downstream pupil image. We develop a rigorous formalism, leading to highly accurate measurement of the NCPA, in a quasi-linear way during the observation. Results. For a static phase map of standard deviation 44 nm rms at {lambda} = 1.625 {mu}m (0.026 {lambda}), we estimate a possible reduction of the chromatic NCPA by a factor ranging from 3 to 10 in the presence of AO residuals compared with the expected performance of a typical current-generation system. This would allow a reduction of the level of quasi-static speckles in the detected images by a factor 10 to 100 hence, correspondingly improving the capacity to observe exoplanets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا