ﻻ يوجد ملخص باللغة العربية
Context. Several exoplanet direct imaging instruments will soon be in operation. They use an extreme adaptive optics (XAO) system to correct the atmospheric turbulence and provide a highly-corrected beam to a near-infrared (NIR) coronagraph for starlight suppression. The performance of the coronagraph is however limited by the non-common path aberrations (NCPA) due to the differential wavefront errors existing between the visible XAO sensing path and the NIR science path, leading to residual speckles in the coronagraphic image. Aims. Several approaches have been developed in the past few years to accurately calibrate the NCPA, correct the quasi-static speckles and allow the observation of exoplanets at least 1e6 fainter than their host star. We propose an approach based on the Zernike phase-contrast method for the measurements of the NCPA between the optical path seen by the visible XAO wavefront sensor and that seen by the near-IR coronagraph. Methods. This approach uses a focal plane phase mask of size {lambda}/D, where {lambda} and D denote the wavelength and the telescope aperture diameter, respectively, to measure the quasi-static aberrations in the upstream pupil plane by encoding them into intensity variations in the downstream pupil image. We develop a rigorous formalism, leading to highly accurate measurement of the NCPA, in a quasi-linear way during the observation. Results. For a static phase map of standard deviation 44 nm rms at {lambda} = 1.625 {mu}m (0.026 {lambda}), we estimate a possible reduction of the chromatic NCPA by a factor ranging from 3 to 10 in the presence of AO residuals compared with the expected performance of a typical current-generation system. This would allow a reduction of the level of quasi-static speckles in the detected images by a factor 10 to 100 hence, correspondingly improving the capacity to observe exoplanets.
Second-generation exoplanet imagers using extreme adaptive optics and coronagraphy have demonstrated their great potential for studying close circumstellar environments and for detecting new companions and helping to understand their physical propert
Warm or massive gas giant planets, brown dwarfs, and debris disks around nearby stars are now routinely observed by dedicated high-contrast imaging instruments on large, ground-based observatories. These facilities include extreme adaptive optics (Ex
Imaging exo-Earths is an exciting but challenging task because of the 10^-10 contrast ratio between these planets and their host star at separations narrower than 100 mas. Large segmented aperture space telescopes enable the sensitivity needed to obs
Future large segmented space telescopes and their coronagraphic instruments are expected to provide the resolution and sensitivity to observe Earth-like planets with a 10^10 contrast ratio at less than 100 mas from their host star. Advanced coronagra
The success of ground-based, high contrast imaging for the detection of exoplanets in part depends on the ability to differentiate between quasi-static speckles caused by aberrations not corrected by adaptive optics (AO) systems, known as non-common