ترغب بنشر مسار تعليمي؟ اضغط هنا

L{e}vys martingale characterization and reflection principle of $G$-Brownian motion

71   0   0.0 ( 0 )
 نشر من قبل Xiaojun Ji
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we obtain L{e}vys martingale characterization of $G$-Brownian motion without the nondegenerate condition. Base on this characterization, we prove the reflection principle of $G$-Brownian motion. Furthermore, we use Krylovs estimate to get the reflection principle of $tilde{G}$-Brownian motion.



قيم البحث

اقرأ أيضاً

227 - Manon Defosseux 2021
We have proved in a previous paper that a space-time Brownian motion conditioned to remain in a Weyl chamber associated to an affine Kac-Moody Lie algebra is distributed as the radial part process of a Brownian sheet on the compact real form of the u nderlying finite dimensional Lie algebra, the radial part being defined considering the coadjoint action of a loop group on the dual of a centrally extended loop algebra. We present here a very brief proof of this result based on a time inversion argument and on elementary stochastic differential calculus.
169 - Hanwu Li , Shige Peng 2017
In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion (RGBSDE for short). The reflection keeps the solution above a given stochastic process. In order to derive the u niqueness of reflected GBSDEs, we apply a martingale condition instead of the Skorohod condition. Similar to the classical case, we prove the existence by approximation via penalization.
169 - Shige Peng 2007
We introduce a new notion of G-normal distributions. This will bring us to a new framework of stochastic calculus of Itos type (Itos integral, Itos formula, Itos equation) through the corresponding G-Brownian motion. We will also present analytical c alculations and some new statistical methods with application to risk analysis in finance under volatility uncertainty. Our basic point of view is: sublinear expectation theory is very like its special situation of linear expectation in the classical probability theory. Under a sublinear expectation space we still can introduce the notion of distributions, of random variables, as well as the notions of joint distributions, marginal distributions, etc. A particularly interesting phenomenon in sublinear situations is that a random variable Y is independent to X does not automatically implies that X is independent to Y. Two important theorems have been proved: The law of large number and the central limit theorem.
96 - Guomin Liu 2018
In this paper, we prove the Girsanov formula for $G$-Brownian motion without the non-degenerate condition. The proof is based on the perturbation method in the nonlinear setting by constructing a product space of the $G$-expectation space and a linea r space that contains a standard Brownian motion. The estimates for exponential martingale of $G$-Brownian motion are important for our arguments.
132 - Fenfen Yang 2018
We establish Harnack inequality and shift Harnack inequality for stochastic differential equation driven by $G$-Brownian motion. As applications, the uniqueness of invariant linear expectations and estimates on the $sup$-kernel are investigated, wher e the $sup$-kernel is introduced in this paper for the first time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا