ﻻ يوجد ملخص باللغة العربية
In this paper, we obtain L{e}vys martingale characterization of $G$-Brownian motion without the nondegenerate condition. Base on this characterization, we prove the reflection principle of $G$-Brownian motion. Furthermore, we use Krylovs estimate to get the reflection principle of $tilde{G}$-Brownian motion.
We have proved in a previous paper that a space-time Brownian motion conditioned to remain in a Weyl chamber associated to an affine Kac-Moody Lie algebra is distributed as the radial part process of a Brownian sheet on the compact real form of the u
In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion (RGBSDE for short). The reflection keeps the solution above a given stochastic process. In order to derive the u
We introduce a new notion of G-normal distributions. This will bring us to a new framework of stochastic calculus of Itos type (Itos integral, Itos formula, Itos equation) through the corresponding G-Brownian motion. We will also present analytical c
In this paper, we prove the Girsanov formula for $G$-Brownian motion without the non-degenerate condition. The proof is based on the perturbation method in the nonlinear setting by constructing a product space of the $G$-expectation space and a linea
We establish Harnack inequality and shift Harnack inequality for stochastic differential equation driven by $G$-Brownian motion. As applications, the uniqueness of invariant linear expectations and estimates on the $sup$-kernel are investigated, wher