ﻻ يوجد ملخص باللغة العربية
We have proved in a previous paper that a space-time Brownian motion conditioned to remain in a Weyl chamber associated to an affine Kac-Moody Lie algebra is distributed as the radial part process of a Brownian sheet on the compact real form of the underlying finite dimensional Lie algebra, the radial part being defined considering the coadjoint action of a loop group on the dual of a centrally extended loop algebra. We present here a very brief proof of this result based on a time inversion argument and on elementary stochastic differential calculus.
In this paper, we obtain L{e}vys martingale characterization of $G$-Brownian motion without the nondegenerate condition. Base on this characterization, we prove the reflection principle of $G$-Brownian motion. Furthermore, we use Krylovs estimate to
We introduce $n$-parameter $Rd$-valued Brownian-time Brownian sheet (BTBS): a Brownian sheet where each time parameter is replaced with the modulus of an independent Brownian motion. We then connect BTBS to a new system of $n$ linear, fourth order, a
In this paper, we consider a reflected backward stochastic differential equation driven by a $G$-Brownian motion ($G$-BSDE), with the generator growing quadratically in the second unknown. We obtain the existence by the penalty method, and a priori e
We introduce a new notion of G-normal distributions. This will bring us to a new framework of stochastic calculus of Itos type (Itos integral, Itos formula, Itos equation) through the corresponding G-Brownian motion. We will also present analytical c
In this paper, we study rough path properties of stochastic integrals of It^{o}s type and Stratonovichs type with respect to $G$-Brownian motion. The roughness of $G$-Brownian Motion is estimated and then the pathwise Norris lemma in $G$-framework is obtained.