ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Mixed-Example Data Augmentation

178   0   0.0 ( 0 )
 نشر من قبل Cecilia Summers
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to reduce overfitting, neural networks are typically trained with data augmentation, the practice of artificially generating additional training data via label-preserving transformations of existing training examples. While these types of transformations make intuitive sense, recent work has demonstrated that even non-label-preserving data augmentation can be surprisingly effective, examining this type of data augmentation through linear combinations of pairs of examples. Despite their effectiveness, little is known about why such methods work. In this work, we aim to explore a new, more generalized form of this type of data augmentation in order to determine whether such linearity is necessary. By considering this broader scope of mixed-example data augmentation, we find a much larger space of practical augmentation techniques, including methods that improve upon previous state-of-the-art. This generalization has benefits beyond the promise of improved performance, revealing a number of types of mixed-example data augmentation that are radically different from those considered in prior work, which provides evidence that current theories for the effectiveness of such methods are incomplete and suggests that any such theory must explain a much broader phenomenon. Code is available at https://github.com/ceciliaresearch/MixedExample.

قيم البحث

اقرأ أيضاً

Despite their empirical success, neural networks still have difficulty capturing compositional aspects of natural language. This work proposes a simple data augmentation approach to encourage compositional behavior in neural models for sequence-to-se quence problems. Our approach, SeqMix, creates new synthetic examples by softly combining input/output sequences from the training set. We connect this approach to existing techniques such as SwitchOut and word dropout, and show that these techniques are all approximating variants of a single objective. SeqMix consistently yields approximately 1.0 BLEU improvement on five different translation datasets over strong Transformer baselines. On tasks that require strong compositional generalization such as SCAN and semantic parsing, SeqMix also offers further improvements.
In many applications of machine learning, certain categories of examples may be underrepresented in the training data, causing systems to underperform on such few-shot cases at test time. A common remedy is to perform data augmentation, such as by du plicating underrepresented examples, or heuristically synthesizing new examples. But these remedies often fail to cover the full diversity and complexity of real examples. We propose a data augmentation approach that performs neural Example Extrapolation (Ex2). Given a handful of exemplars sampled from some distribution, Ex2 synthesizes new examples that also belong to the same distribution. The Ex2 model is learned by simulating the example generation procedure on data-rich slices of the data, and it is applied to underrepresented, few-shot slices. We apply Ex2 to a range of language understanding tasks and significantly improve over state-of-the-art methods on multiple few-shot learning benchmarks, including for relation extraction (FewRel) and intent classification + slot filling (SNIPS).
The rapid progress in machine learning methods has been empowered by i) huge datasets that have been collected and annotated, ii) improved engineering (e.g. data pre-processing/normalization). The existing datasets typically include several million s amples, which constitutes their extension a colossal task. In addition, the state-of-the-art data-driven methods demand a vast amount of data, hence a standard engineering trick employed is artificial data augmentation for instance by adding into the data cropped and (affinely) transformed images. However, this approach does not correspond to any change in the natural 3D scene. We propose instead to perform data augmentation through learning realistic local transformations. We learn a forward and an inverse transformation that maps an image from the high-dimensional space of pixel intensities to a latent space which varies (approximately) linearly with the latent space of a realistically transformed version of the image. Such transformed images can be considered two successive frames in a video. Next, we utilize these transformations to learn a linear model that modifies the latent spaces and then use the inverse transformation to synthesize a new image. We argue that the this procedure produces powerful invariant representations. We perform both qualitative and quantitative experiments that demonstrate our proposed method creates new realistic images.
In this paper, we propose a novel implicit semantic data augmentation (ISDA) approach to complement traditional augmentation techniques like flipping, translation or rotation. Our work is motivated by the intriguing property that deep networks are su rprisingly good at linearizing features, such that certain directions in the deep feature space correspond to meaningful semantic transformations, e.g., adding sunglasses or changing backgrounds. As a consequence, translating training samples along many semantic directions in the feature space can effectively augment the dataset to improve generalization. To implement this idea effectively and efficiently, we first perform an online estimate of the covariance matrix of deep features for each class, which captures the intra-class semantic variations. Then random vectors are drawn from a zero-mean normal distribution with the estimated covariance to augment the training data in that class. Importantly, instead of augmenting the samples explicitly, we can directly minimize an upper bound of the expected cross-entropy (CE) loss on the augmented training set, leading to a highly efficient algorithm. In fact, we show that the proposed ISDA amounts to minimizing a novel robust CE loss, which adds negligible extra computational cost to a normal training procedure. Although being simple, ISDA consistently improves the generalization performance of popular deep models (ResNets and DenseNets) on a variety of datasets, e.g., CIFAR-10, CIFAR-100 and ImageNet. Code for reproducing our results is available at https://github.com/blackfeather-wang/ISDA-for-Deep-Networks.
Adversarial training suffers from robust overfitting, a phenomenon where the robust test accuracy starts to decrease during training. In this paper, we focus on both heuristics-driven and data-driven augmentations as a means to reduce robust overfitt ing. First, we demonstrate that, contrary to previous findings, when combined with model weight averaging, data augmentation can significantly boost robust accuracy. Second, we explore how state-of-the-art generative models can be leveraged to artificially increase the size of the training set and further improve adversarial robustness. Finally, we evaluate our approach on CIFAR-10 against $ell_infty$ and $ell_2$ norm-bounded perturbations of size $epsilon = 8/255$ and $epsilon = 128/255$, respectively. We show large absolute improvements of +7.06% and +5.88% in robust accuracy compared to previous state-of-the-art methods. In particular, against $ell_infty$ norm-bounded perturbations of size $epsilon = 8/255$, our model reaches 64.20% robust accuracy without using any external data, beating most prior works that use external data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا