ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a novel implicit semantic data augmentation (ISDA) approach to complement traditional augmentation techniques like flipping, translation or rotation. Our work is motivated by the intriguing property that deep networks are surprisingly good at linearizing features, such that certain directions in the deep feature space correspond to meaningful semantic transformations, e.g., adding sunglasses or changing backgrounds. As a consequence, translating training samples along many semantic directions in the feature space can effectively augment the dataset to improve generalization. To implement this idea effectively and efficiently, we first perform an online estimate of the covariance matrix of deep features for each class, which captures the intra-class semantic variations. Then random vectors are drawn from a zero-mean normal distribution with the estimated covariance to augment the training data in that class. Importantly, instead of augmenting the samples explicitly, we can directly minimize an upper bound of the expected cross-entropy (CE) loss on the augmented training set, leading to a highly efficient algorithm. In fact, we show that the proposed ISDA amounts to minimizing a novel robust CE loss, which adds negligible extra computational cost to a normal training procedure. Although being simple, ISDA consistently improves the generalization performance of popular deep models (ResNets and DenseNets) on a variety of datasets, e.g., CIFAR-10, CIFAR-100 and ImageNet. Code for reproducing our results is available at https://github.com/blackfeather-wang/ISDA-for-Deep-Networks.
Data augmentation is widely known as a simple yet surprisingly effective technique for regularizing deep networks. Conventional data augmentation schemes, e.g., flipping, translation or rotation, are low-level, data-independent and class-agnostic ope
Data augmentation is an essential part of the training process applied to deep learning models. The motivation is that a robust training process for deep learning models depends on large annotated datasets, which are expensive to be acquired, stored
Semantic image segmentation aims to obtain object labels with precise boundaries, which usually suffers from overfitting. Recently, various data augmentation strategies like regional dropout and mix strategies have been proposed to address the proble
Nowadays, subsurface salt body localization and delineation, also called semantic segmentation of salt bodies, are among the most challenging geophysicist tasks. Thus, identifying large salt bodies is notoriously tricky and is crucial for identifying
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data. Although it is recognized that statistical heterogeneity