ﻻ يوجد ملخص باللغة العربية
The present work aims at obtaining estimates for transformation operators for one-dimensional perturbed radial Schrodinger operators. It provides more details and suitable extensions to already existing results, that are needed in other recent contributions dealing with these kinds of operators.
Let $H_0 = -Delta + V_0(x)$ be a Schroedinger operator on $L_2(mathbb{R}^ u),$ $ u=1,2,$ or 3, where $V_0(x)$ is a bounded measurable real-valued function on $mathbb{R}^ u.$ Let $V$ be an operator of multiplication by a bounded integrable real-valued
We consider discrete Schrodinger operators with aperiodic potentials given by a Sturmian word, which is a natural generalisation of the Fibonacci Hamiltonian. We introduce the finite section method, which is often used to solve operator equations app
Let $Sigmasubsetmathbb{R}^d$ be a $C^infty$-smooth closed compact hypersurface, which splits the Euclidean space $mathbb{R}^d$ into two domains $Omega_pm$. In this note self-adjoint Schrodinger operators with $delta$ and $delta$-interactions supporte
We consider a Schrodinger operator with complex-valued potentials on the line. The operator has essential spectrum on the half-line plus eigenvalues (counted with algebraic multiplicity) in the complex plane without the positive half-line. We determi
We study the direct and inverse scattering problem for the one-dimensional Schrodinger equation with steplike potentials. We give necessary and sufficient conditions for the scattering data to correspond to a potential with prescribed smoothness and