ترغب بنشر مسار تعليمي؟ اضغط هنا

Singular spectral shift function for Schrodinger operators

228   0   0.0 ( 0 )
 نشر من قبل Tom Daniels
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $H_0 = -Delta + V_0(x)$ be a Schroedinger operator on $L_2(mathbb{R}^ u),$ $ u=1,2,$ or 3, where $V_0(x)$ is a bounded measurable real-valued function on $mathbb{R}^ u.$ Let $V$ be an operator of multiplication by a bounded integrable real-valued function $V(x)$ and put $H_r = H_0+rV$ for real $r.$ We show that the associated spectral shift function (SSF) $xi$ admits a natural decomposition into the sum of absolutely continuous $xi^{(a)}$ and singular $xi^{(s)}$ SSFs. This is a special case of an analogous result for resolvent comparable pairs of self-adjoint operators, which generalises the known case of a trace class perturbation while also simplifying its proof. We present two proofs -- one short and one long -- which we consider to have value of their own. The long proof along the way reframes some classical results from the perturbation theory of self-adjoint operators, including the existence and completeness of the wave operators and the Birman-Krein formula relating the scattering matrix and the SSF. The two proofs demonstrate the equality of the singular SSF with two a priori different but intrinsically integer-valued functions: the total resonance index and the singular $mu$-invariant.



قيم البحث

اقرأ أيضاً

161 - Nurulla Azamov 2011
This paper is a continuation of my previous work on absolutely continuous and singular spectral shift functions, where it was in particular proved that the singular part of the spectral shift function is an a.e. integer-valued function. It was also s hown that the singular spectral shift function is a locally constant function of the coupling constant $r,$ with possible jumps only at resonance points. Main result of this paper asserts that the jump of the singular spectral shift function at a resonance point is equal to the so-called resonance index, --- a new (to the best of my knowledge) notion introduced in this paper. Resonance index can be described as follows. For a fixed $lambda$ the resonance points $r_0$ of a path $H_r$ of self-adjoint operators are real poles of a certain meromorphic function associated with the triple $(lambda+i0; H_0,V).$ When $lambda+i0$ is shifted to $lambda+iy$ with small $y>0,$ that pole get off the real axis in the coupling constant complex plane and, in general, splits into some $N_+$ poles in the upper half-plane and some $N_-$ poles in the lower half-plane (counting multiplicities). Resonance index of the triple $(lambda; H_{r_0},V)$ is the difference $N_+-N_-.$ Based on the theorem just described, a non-trivial example of singular spectral shift function is given.
432 - Nurulla Azamov 2018
Given a self-adjoint operator H, a self-adjoint trace class operator V and a fixed Hilbert-Schmidt operator F with trivial kernel and co-kernel, using limiting absorption principle an explicit set of full Lebesgue measure is defined such that for all points of this set the wave and the scattering matrices can be defined and constructed unambiguously. Many well-known properties of the wave and scattering matrices and operators are proved, including the stationary formula for the scattering matrix. This new abstract scattering theory allows to prove that for any trace class perturbations of arbitrary self-adjoint operators the singular part of the spectral shift function is an almost everywhere integer-valued function.
Let $Sigmasubsetmathbb{R}^d$ be a $C^infty$-smooth closed compact hypersurface, which splits the Euclidean space $mathbb{R}^d$ into two domains $Omega_pm$. In this note self-adjoint Schrodinger operators with $delta$ and $delta$-interactions supporte d on $Sigma$ are studied. For large enough $minmathbb{N}$ the difference of $m$th powers of resolvents of such a Schrodinger operator and the free Laplacian is known to belong to the trace class. We prove trace formulae, in which the trace of the resolvent power difference in $L^2(mathbb{R}^d)$ is written in terms of Neumann-to-Dirichlet maps on the boundary space $L^2(Sigma)$.
Let $H_0$ be a purely absolutely continuous selfadjoint operator acting on some separable infinite-dimensional Hilbert space and $V$ be a compact non-selfadjoint perturbation. We relate the regularity properties of $V$ to various spectral properties of the perturbed operator $H_0+V$. The structure of the discrete spectrum and the embedded eigenvalues are analysed jointly with the existence of limiting absorption principles in a unified framework. Our results are based on a suitable combination of complex scaling techniques, resonance theory and positive commutators methods. Various results scattered throughout the literature are recovered and extended. For illustrative purposes, the case of the one-dimensional discrete Laplacian is emphasized.
176 - Nurulla Azamov 2010
In this paper it is shown that in case of trace class perturbations the singular part of Pushnitski $mu$-invariant does not depend on the angle variable. This gives an alternative proof of integer-valuedness of the singular part of the spectral shift function. As a consequence, the Birman-Krein formula for trace class perturbations follows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا