ﻻ يوجد ملخص باللغة العربية
This paper provides a mathematical framework for estimation of the service time distribution and the expected service time of an infinite-server queueing system with a nonhomogeneous Poisson arrival process, in the case of partial information, where only the number of busy servers are observed over time. The problem is reduced to a statistical deconvolution problem, which is solved by using Laplace transform techniques and kernels for regularization. Upper bounds on the mean squared error of the proposed estimators are derived. Some concrete simulation experiments are performed to illustrate how the method can be applied and to provide some insight in the practical performance.
In this paper we study the number of customers in infinite-server queues with a self-exciting (Hawkes) arrival process. Initially we assume that service requirements are exponentially distributed and that the Hawkes arrival process is of a Markovian
In this paper we consider multivariate Hawkes processes with baseline hazard and kernel functions that depend on time. This defines a class of locally stationary processes. We discuss estimation of the time-dependent baseline hazard and kernel functi
This paper studies nonparametric estimation of parameters of multivariate Hawkes processes. We consider the Bayesian setting and derive posterior concentration rates. First rates are derived for L1-metrics for stochastic intensities of the Hawkes pro
A Bayesian nonparametric estimator to entropy is proposed. The derivation of the new estimator relies on using the Dirichlet process and adapting the well-known frequentist estimators of Vasicek (1976) and Ebrahimi, Pflughoeft and Soofi (1994). Sever
Consider a Poisson point process with unknown support boundary curve $g$, which forms a prototype of an irregular statistical model. We address the problem of estimating non-linear functionals of the form $int Phi(g(x)),dx$. Following a nonparametric