ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonparametric estimation of locally stationary Hawkes processe

174   0   0.0 ( 0 )
 نشر من قبل Enno Mammen
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Enno Mammen




اسأل ChatGPT حول البحث

In this paper we consider multivariate Hawkes processes with baseline hazard and kernel functions that depend on time. This defines a class of locally stationary processes. We discuss estimation of the time-dependent baseline hazard and kernel functions based on a localized criterion. Theory on stationary Hawkes processes is extended to develop asymptotic theory for the estimator in the locally stationary model.



قيم البحث

اقرأ أيضاً

Locally stationary Hawkes processes have been introduced in order to generalise classical Hawkes processes away from stationarity by allowing for a time-varying second-order structure. This class of self-exciting point processes has recently attracte d a lot of interest in applications in the life sciences (seismology, genomics, neuro-science,...), but also in the modelling of high-frequency financial data. In this contribution we provide a fully developed nonparametric estimation theory of both local mean density and local Bartlett spectra of a locally stationary Hawkes process. In particular we apply our kernel estimation of the spectrum localised both in time and frequency to two data sets of transaction times revealing pertinent features in the data that had not been made visible by classical non-localised approaches based on models with constant fertility functions over time.
74 - Sophie Donnet 2018
This paper studies nonparametric estimation of parameters of multivariate Hawkes processes. We consider the Bayesian setting and derive posterior concentration rates. First rates are derived for L1-metrics for stochastic intensities of the Hawkes pro cess. We then deduce rates for the L1-norm of interactions functions of the process. Our results are exemplified by using priors based on piecewise constant functions, with regular or random partitions and priors based on mixtures of Betas distributions. Numerical illustrations are then proposed with in mind applications for inferring functional connec-tivity graphs of neurons.
This paper aims at providing statistical guarantees for a kernel based estimation of time varying parameters driving the dynamic of local stationary processes. We extend the results of Dahlhaus et al. (2018) considering the local stationary version o f the infinite memory processes of Doukhan and Wintenberger (2008). The estimators are computed as localized M-estimators of any contrast satisfying appropriate contraction conditions. We prove the uniform consistency and pointwise asymptotic normality of such kernel based estimators. We apply our result to usual contrasts such as least-square, least absolute value, or quasi-maximum likelihood contrasts. Various local-stationary processes as ARMA, AR(infty), GARCH, ARCH(infty), ARMA-GARCH, LARCH(infty),..., and integer valued processes are also considered. Numerical experiments demonstrate the efficiency of the estimators on both simulated and real data sets.
138 - Van Ha Hoang 2017
We consider a stochastic individual-based model in continuous time to describe a size-structured population for cell divisions. This model is motivated by the detection of cellular aging in biology. We address here the problem of nonparametric estima tion of the kernel ruling the divisions based on the eigenvalue problem related to the asymptotic behavior in large population. This inverse problem involves a multiplicative deconvolution operator. Using Fourier technics we derive a nonparametric estimator whose consistency is studied. The main difficulty comes from the non-standard equations connecting the Fourier transforms of the kernel and the parameters of the model. A numerical study is carried out and we pay special attention to the derivation of bandwidths by using resampling.
In this contribution we introduce weakly locally stationary time series through the local approximation of the non-stationary covariance structure by a stationary one. This allows us to define autoregression coefficients in a non-stationary context, which, in the particular case of a locally stationary Time Varying Autoregressive (TVAR) process, coincide with the generating coefficients. We provide and study an estimator of the time varying autoregression coefficients in a general setting. The proposed estimator of these coefficients enjoys an optimal minimax convergence rate under limited smoothness conditions. In a second step, using a bias reduction technique, we derive a minimax-rate estimator for arbitrarily smooth time-evolving coefficients, which outperforms the previous one for large data sets. In turn, for TVAR processes, the predictor derived from the estimator exhibits an optimal minimax prediction rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا