ترغب بنشر مسار تعليمي؟ اضغط هنا

Functional estimation and hypothesis testing in nonparametric boundary models

58   0   0.0 ( 0 )
 نشر من قبل Martin Wahl
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Consider a Poisson point process with unknown support boundary curve $g$, which forms a prototype of an irregular statistical model. We address the problem of estimating non-linear functionals of the form $int Phi(g(x)),dx$. Following a nonparametric maximum-likelihood approach, we construct an estimator which is UMVU over Holder balls and achieves the (local) minimax rate of convergence. These results hold under weak assumptions on $Phi$ which are satisfied for $Phi(u)=|u|^p$, $pge 1$. As an application, we consider the problem of estimating the $L^p$-norm and derive the minimax separation rates in the corresponding nonparametric hypothesis testing problem. Structural differences to results for regular nonparametric models are discussed.



قيم البحث

اقرأ أيضاً

We discuss a general approach to handling multiple hypotheses testing in the case when a particular hypothesis states that the vector of parameters identifying the distribution of observations belongs to a convex compact set associated with the hypot hesis. With our approach, this problem reduces to testing the hypotheses pairwise. Our central result is a test for a pair of hypotheses of the outlined type which, under appropriate assumptions, is provably nearly optimal. The test is yielded by a solution to a convex programming problem, so that our construction admits computationally efficient implementation. We further demonstrate that our assumptions are satisfied in several important and interesting applications. Finally, we show how our approach can be applied to a rather general detection problem encompassing several classical statistical settings such as detection of abrupt signal changes, cusp detection and multi-sensor detection.
Let $v$ be a vector field in a bounded open set $Gsubset {mathbb {R}}^d$. Suppose that $v$ is observed with a random noise at random points $X_i, i=1,...,n,$ that are independent and uniformly distributed in $G.$ The problem is to estimate the integr al curve of the differential equation [frac{dx(t)}{dt}=v(x(t)),qquad tgeq 0,x(0)=x_0in G,] starting at a given point $x(0)=x_0in G$ and to develop statistical tests for the hypothesis that the integral curve reaches a specified set $Gammasubset G.$ We develop an estimation procedure based on a Nadaraya--Watson type kernel regression estimator, show the asymptotic normality of the estimated integral curve and derive differential and integral equations for the mean and covariance function of the limit Gaussian process. This provides a method of tracking not only the integral curve, but also the covariance matrix of its estimate. We also study the asymptotic distribution of the squared minimal distance from the integral curve to a smooth enough surface $Gammasubset G$. Building upon this, we develop testing procedures for the hypothesis that the integral curve reaches $Gamma$. The problems of this nature are of interest in diffusion tensor imaging, a brain imaging technique based on measuring the diffusion tensor at discrete locations in the cerebral white matter, where the diffusion of water molecules is typically anisotropic. The diffusion tensor data is used to estimate the dominant orientations of the diffusion and to track white matter fibers from the initial location following these orientations. Our approach brings more rigorous statistical tools to the analysis of this problem providing, in particular, hypothesis testing procedures that might be useful in the study of axonal connectivity of the white matter.
We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is small relative to the sample size. The statistical problem is to determine which additive components are nonzero. The additive components are approximated by truncated series expansions with B-spline bases. With this approximation, the problem of component selection becomes that of selecting the groups of coefficients in the expansion. We apply the adaptive group Lasso to select nonzero components, using the group Lasso to obtain an initial estimator and reduce the dimension of the problem. We give conditions under which the group Lasso selects a model whose number of components is comparable with the underlying model, and the adaptive group Lasso selects the nonzero components correctly with probability approaching one as the sample size increases and achieves the optimal rate of convergence. The results of Monte Carlo experiments show that the adaptive group Lasso procedure works well with samples of moderate size. A data example is used to illustrate the application of the proposed method.
Kernel-based nonparametric hazard rate estimation is considered with a special class of infinite-order kernels that achieves favorable bias and mean square error properties. A fully automatic and adaptive implementation of a density and hazard rate e stimator is proposed for randomly right censored data. Careful selection of the bandwidth in the proposed estimators yields estimates that are more efficient in terms of overall mean squared error performance, and in some cases achieves a nearly parametric convergence rate. Additionally, rapidly converging bandwidth estimates are presented for use in second-order kernels to supplement such kernel-based methods in hazard rate estimation. Simulations illustrate the improved accuracy of the proposed estimator against other nonparametric estimators of the density and hazard function. A real data application is also presented on survival data from 13,166 breast carcinoma patients.
A Bayesian nonparametric estimator to entropy is proposed. The derivation of the new estimator relies on using the Dirichlet process and adapting the well-known frequentist estimators of Vasicek (1976) and Ebrahimi, Pflughoeft and Soofi (1994). Sever al theoretical properties, such as consistency, of the proposed estimator are obtained. The quality of the proposed estimator has been investigated through several examples, in which it exhibits excellent performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا