ﻻ يوجد ملخص باللغة العربية
We study the eigenspace decomposition of a basic classical Lie superalgebra under the adjoint action of a toral subalgebra, thus extending results of Kostant. In recognition of Kostants contribution we refer to the eigenspaces appearing in the decomposition as Kostant roots. We then prove that Kostant root systems inherit the main properties of classical root systems. Our approach is combinatorial in nature and utilizes certain graphs naturally associated with Kostant root systems. In particular, we reprove Kostants results without making use of the Killing form.
Let $mathfrak{r}$ be a finite dimensional complex Lie superalgebra with a non-degenerate super-symmetric invariant bilinear form, let $mathfrak{p}$ be a finite dimensional complex super vector space with a non-degenerate super-symmetric bilinear form
Using Howe duality we compute explicitly Kostant-type homology groups for a wide class of representations of the infinite-dimensional Lie superalgebra $hat{frak{gl}}_{infty|infty}$ and its classical subalgebras at positive integral levels. We also ob
In this paper the authors introduce a class of parabolic subalgebras for classical simple Lie superalgebras associated to the detecting subalgebras introduced by Boe, Kujawa and Nakano. These parabolic subalgebras are shown to have good cohomological
For a finite dimensional unital complex simple Jordan superalgebra $J$, the Tits-Kantor-Koecher construction yields a 3-graded Lie superalgebra $mathfrak g_flatcong mathfrak g_flat(-1)oplusmathfrak g_flat(0)oplusmathfrak g_flat(1)$, such that $mathfr
We investigate a new cohomology of Lie superalgebras, which may be compared to a de Rham cohomology of Lie supergroups involving both differential and integral forms. It is defined by a BRST complex of Lie superalgebra modules, which is formulated in