ترغب بنشر مسار تعليمي؟ اضغط هنا

On BBW parabolics for simple classical Lie superalgebras

164   0   0.0 ( 0 )
 نشر من قبل Daniel Nakano
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper the authors introduce a class of parabolic subalgebras for classical simple Lie superalgebras associated to the detecting subalgebras introduced by Boe, Kujawa and Nakano. These parabolic subalgebras are shown to have good cohomological properties governed by the Bott-Borel-Weil theorem involving the zero component of the Lie superalgebra in conjunction with the odd roots. These results are later used to verify an open conjecture given by Boe, Kujawa and Nakano pertaining to the equality of various support varieties.



قيم البحث

اقرأ أيضاً

We classify all simple bounded highest weight modules of a basic classical Lie superalgebra $mathfrak g$. In particular, our classification leads to the classification of the simple weight modules with finite weight multiplicities over all classical Lie superalgebras. We also obtain some character formulas of strongly typical bounded highest weight modules of $mathfrak g$.
We prove that the tensor product of a simple and a finite dimensional $mathfrak{sl}_n$-module has finite type socle. This is applied to reduce classification of simple $mathfrak{q}(n)$-supermodules to that of simple $mathfrak{sl}_n$-modules. Rough st ructure of simple $mathfrak{q}(n)$-supermodules, considered as $mathfrak{sl}_n$-modules, is described in terms of the combinatorics of category $mathcal{O}$.
Over algebraically closed fields of characteristic p>2, prolongations of the simple finite dimensional Lie algebras and Lie superalgebras with Cartan matrix are studied for certain simplest gradings of these algebras. Several new simple Lie superalge bras are discovered, serial and exceptional, including superBrown and superMelikyan superalgebras. Simple Lie superalgebras with Cartan matrix of rank 2 are classified.
171 - Dimitry Leites 2007
A way to construct (conjecturally all) simple finite dimensional modular Lie (super)algebras over algebraically closed fields of characteristic not 2 is offered. In characteristic 2, the method is supposed to give only simple Lie (super)algebras grad ed by integers and only some of the non-graded ones). The conjecture is backed up with the latest results computationally most difficult of which are obtained with the help of Grozmans software package SuperLie.
As is well-known, the dimension of the space spanned by the non-degenerate invariant symmetric bilinear forms (NISes) on any simple finite-dimensional Lie algebra or Lie superalgebra is equal to at most 1 if the characteristic of the algebraically cl osed ground field is not 2. We prove that in characteristic 2, the superdimension of the space spanned by NISes can be equal to 0, or 1, or $0|1$, or $1|1$; it is equal to $1|1$ if and only if the Lie superalgebra is a queerification (defined in arXiv:1407.1695) of a simple classically restricted Lie algebra with a NIS (for examples, mainly in characteristic distinct from 2, see arXiv:1806.05505). We give examples of NISes on deformations (with both even and odd parameters) of several simple finite-dimensional Lie superalgebras in characteristic 2. We also recall examples of multiple NISes on simple Lie algebras over non-closed fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا