ﻻ يوجد ملخص باللغة العربية
We investigate the potential collider signatures of singly-charged and doubly-charged Higgs bosons such as those arising in minimal left-right symmetric models. Focusing on multileptonic probes in the context of the high-luminosity run of the Large Hadron Collider, we separately assess the advantages of the four-leptonic and trileptonic final states for a representative benchmark setup designed by considering a large set of experimental constraints. Our study establishes possibilities of identifying singly-charged and doubly-charged scalars at the Large Hadron Collider with a large significance, for luminosity goals expected to be reached during the high-luminosity phase of the Large Hadron Collider. We generalise our results and demonstrate that existing limits can in principle be pushed much further in the heavy mass regime.
In a previous paper we study the neutrino-electron scattering in the framework of a left-right symmetric model (LRSM). Constraints on the LRSM parameters $M_{Z_{2}}$ and $phi$ were obtained. Based on new measurements we present an update to these con
Left-Right symmetric model (LRSM) has been an attractive extension of the Standard Model (SM) which can address the origin of parity violation in the SM electroweak (EW) interactions, generate tiny neutrino masses, accommodate dark matter (DM) candid
We present an implementation of the manifest left-right symmetric model in FeynRules. The different aspects of the model are briefly described alongside the corresponding elements of the model file. The model file is validated and can be easily trans
We consider baryon-number-violating nucleon and dinucleon decays to leptonic final states in the context of a left-right symmetric (LRS) model with large extra dimensions. Specifically, we study (a) nucleon to trilepton decays with $Delta B=-1$ and $
We develop a minimal left-right symmetric model based on the gauge group $SU(3)_C otimes SU(2)_L otimes SU(2)_R otimes U(1)_{B-L}$ wherein the Higgs triplets conventionally employed for symmetry breaking are replaced by Higgs doublets. Majorana masse