ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalar dark matter explanation of the DAMPE data in the minimal Left-Right symmetric model

90   0   0.0 ( 0 )
 نشر من قبل Peiwen Wu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Left-Right symmetric model (LRSM) has been an attractive extension of the Standard Model (SM) which can address the origin of parity violation in the SM electroweak (EW) interactions, generate tiny neutrino masses, accommodate dark matter (DM) candidates and provide a natural framework for baryogenesis through leptogenesis. In this work we utilize the minimal LRSM to study the recently reported DAMPE results of cosmic $e^+e^-$ spectrum which exhibits a tentative peak around 1.4 TeV, while satisfying the current neutrino data. We propose to explain the DAMPE peak with a complex scalar DM $chi$ in two scenarios: 1) $chichi^* to H_1^{++}H_1^{--} to ell_i^+ell_i^+ell_j^-ell_j^-$; 2) $chichi^* to H_{k}^{++}H_{k}^{--} to ell_i^+ell_i^+ell_j^-ell_j^-$ accompanied by $chichi^* to H_1^+ H_1^- to ell_i^+ u_{ell_i} ell_j^- u_{ell_j}$ with $ell_{i,j}=e,mu,tau$ and $k=1,2$. We fit the theoretical prediction on $e^+e^-$ spectrum to relevant experimental data to determine the scalar mass spectrum favored by the DAMPE excess. We also consider various constraints from theoretical principles, collider experiments as well as DM relic density and direct search experiments. We find that there are ample parameter space which can interpret the DAMPE data while passing the constraints. Our explanations, on the other hand, usually imply the existence of other new physics at the energy scale ranging from $10^7 {rm GeV}$ to $10^{11} {rm GeV}$. Collider tests of our explanations are also discussed.

قيم البحث

اقرأ أيضاً

The left-right symmetric model (LRSM) is a well-motivated framework to restore parity and implement seesaw mechanisms for the tiny neutrino masses at or above the TeV-scale, and has a very rich phenomenology at both the high-energy and high-precision frontiers. In this paper we examine the phase transition and resultant gravitational waves (GWs) in the minimal version of LRSM. Taking into account all the theoretical and experimental constraints on LRSM, we identify the parameter regions with strong first-order phase transition and detectable GWs in the future experiments. It turns out in a sizeable region of the parameter space, GWs can be generated in the phase transition with the strength of $10^{-17}$ to $10^{-12}$ at the frequency of 0.1 to 10 Hz, which can be detected by BBO and DECIGO. Furthermore, GWs in the LRSM favor a relatively light $SU(2)_R$-breaking scalar $H_3^0$, which is largely complementary to the direct searches of a long-lived neutral scalar at the high-energy colliders. It is found that the other heavy scalars and the right-handed neutrinos in the LRSM also play an important part for GW signal production in the phase transition.
In the framework of Left-Right symmetric model, we investigate an interesting scenario, in which the so-called VEV seesaw problem can be naturally solved with Z_2 symmetry. In such a scenario, we find a pair of stable weakly interacting massive parti cles (WIMPs), which may be the cold dark matter candidates. However, the WIMP-nucleon cross section is 3-5 orders of magnitude above the present upper bounds from the direct dark matter detection experiments for $m sim 10^2-10^4 $ GeV. As a result, the relic number density of two stable particles has to be strongly suppressed to a very small level. Nevertheless, our analysis shows that this scenario cant provide very large annihilation cross sections so as to give the desired relic abundance except for the resonance case. Only for the case if the rotation curves of disk galaxies are explained by the Modified Newtonian Dynamics (MOND), the stable WIMPs could be as the candidates of cold dark matter.
66 - P. V. Dong , D. T. Huong 2016
We argue that dark matter can automatically arise from a gauge theory that possesses a non-minimal left-right gauge symmetry, SU(3)_C otimes SU(M)_L otimes SU(N)_R otimes U(1)_X, for (M,N) = (2,3), (3,2), (3,3), cdots, and (5,5).
We perform a global analysis of the low-energy phenomenology of the minimal left-right symmetric model (mLRSM) with parity symmetry. We match the mLRSM to the Standard Model Effective Field Theory Lagrangian at the left-right-symmetry breaking scale and perform a comprehensive fit to low-energy data including mesonic, neutron, and nuclear $beta$-decay processes, $Delta F=1$ and $Delta F=2$ CP-even and -odd processes in the bottom and strange sectors, and electric dipole moments (EDMs) of nucleons, nuclei, and atoms. We fit the Cabibbo-Kobayashi-Maskawa and mLRSM parameters simultaneously and determine a lower bound on the mass of the right-handed $W_R$ boson. In models where a Peccei-Quinn mechanism provides a solution to the strong CP problem, we obtain $M_{W_R} gtrsim 5.5$ TeV at $95%$ C.L. which can be significantly improved with next-generation EDM experiments. In the $P$-symmetric mLRSM without a Peccei-Quinn mechanism we obtain a more stringent constraint $M_{W_R} gtrsim 17$ TeV at $95%$ C.L., which is difficult to improve with low-energy measurements alone. In all cases, the additional scalar fields of the mLRSM are required to be a few times heavier than the right-handed gauge bosons. We consider a recent discrepancy in tests of first-row unitarity of the CKM matrix. We find that, while TeV-scale $W_R$ bosons can alleviate some of the tension found in the $V_{ud,us}$ determinations, a solution to the discrepancy is disfavored when taking into account other low-energy observables within the mLRSM.
The flux of high-energy cosmic-ray electrons plus positrons recently measured by the DArk Matter Particle Explorer (DAMPE) exhibits a tentative peak excess at an energy of around $1.4$ TeV. In this paper, we consider the minimal gauged $U(1)_{B-L}$ m odel with a right-handed neutrino (RHN) dark matter (DM) and interpret the DAMPE peak with a late-time decay of the RHN DM into $e^pm W^mp$. We find that a DM lifetime $tau_{DM} sim 10^{28}$ s can fit the DAMPE peak with a DM mass $m_{DM}=3$ TeV. This favored lifetime is close to the current bound on it by Fermi-LAT, our decaying RHN DM can be tested once the measurement of cosmic gamma ray flux is improved. The RHN DM communicates with the Standard Model particles through the $U(1)_{B-L}$ gauge boson ($Z^prime$ boson), and its thermal relic abundance is controlled by only three free parameters: $m_{DM}$, the $U(1)_{B-L}$ gauge coupling ($alpha_{BL}$), and the $Z^prime$ boson mass ($m_{Z^prime}$). For $m_{DM}=3$ TeV, the rest of the parameters are restricted to be $m_{Z^prime}simeq 6$ TeV and $0.00807 leq alpha_{BL} leq 0.0149$, in order to reproduce the observed DM relic density and to avoid the Landau pole for the running $alpha_{BL}$ below the Planck scale. This allowed region will be tested by the search for a $Z^prime$ boson resonance at the future Large Hadron Collider.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا