ﻻ يوجد ملخص باللغة العربية
We present an implementation of the manifest left-right symmetric model in FeynRules. The different aspects of the model are briefly described alongside the corresponding elements of the model file. The model file is validated and can be easily translated to matrix element generators such as MadGraph5_aMC@NLO, CalcHEP, Sherpa, etc. The implementation of the left-right symmetric model is a useful step for studying new physics signals with the data generated at the LHC.
We develop a minimal left-right symmetric model based on the gauge group $SU(3)_C otimes SU(2)_L otimes SU(2)_R otimes U(1)_{B-L}$ wherein the Higgs triplets conventionally employed for symmetry breaking are replaced by Higgs doublets. Majorana masse
We present a minimal left-right symmetric flavor model and analyze the predictions for the neutrino sector. In this scenario, the Yukawa sector is shaped by the dihedral $D_4$ symmetry which leads to correlations for the neutrino mixing parameters. W
The left-right symmetric model (LRSM) is a well-motivated framework to restore parity and implement seesaw mechanisms for the tiny neutrino masses at or above the TeV-scale, and has a very rich phenomenology at both the high-energy and high-precision
We derive analytic necessary and sufficient conditions for the vacuum stability of the left-right symmetric model by using the concepts of copositivity and gauge orbit spaces. We also derive the conditions sufficient for successful symmetry breaking
We consider type I+II seesaw mechanism, where the exchanges of both right-handed neutrinos and isotriplet Higgs bosons contribute to the neutrino mass. Working in the left-right symmetric framework and assuming the mass matrix of light neutrinos $m_