ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the $n$-dimensional ($n=2,3$) Camassa-Holm equations with fractional Laplacian viscosity in the whole space. In stark contrast to the Camassa-Holm equations without any nonlocal effect, to our best knowledge, little has been known on the large time behavior and convergence for the nonlocal equations under study. We first study the large time behavior of solutions. We then discuss the relation between the equations under consideration and the imcompressible Navier-Stokes equations with fractional Laplacian viscosity (INSF). The main difficulty to achieve them lies in the fractional Laplacian viscosity. Fortunately, by employing some properties of fractional Laplacian, in particular, the fractional Leibniz chain rule and the fractional Gagliardo-Nirenberg-Sobolev type estimates, the high and low frequency splitting method and the Fourier splitting method, we first establish the large time behavior concerning non-uniform decay and algebraic decay of solutions to the nonlocal equations under study. In particular, under the critical case $s=dfrac{n}{4}$, the nonlocal version of Ladyzhenskayas inequality is skillfully used, and the smallness of initial data in several Sobolev spaces is required to gain the non-uniform decay and algebraic decay. On the other hand, by means of the fractional heat kernel estimates, we figure out the relation between the nonlocal equations under consideration and the equations (INSF). Specifically, we prove that the solution to the Camassa-Holm equations with nonlocal viscosity converges strongly as the filter parameter $alpharightarrow~0$ to a solution of the equations (INSF).
We study the existence, uniqueness and regularity of solutions to the $n$-dimensional ($n=2,3$) Camassa-Holm equations with fractional Laplacian viscosity with smooth initial data. It is a coupled system between the Navier-Stokes equations with nonlo
In the paper, by constructing a initial data $u_{0}in B^{sigma}_{p,infty}$ with $sigma-2>max{1+frac 1 p, frac 3 2}$, we prove that the corresponding solution to the higher dimensional Camassa-Holm equations starting from $u_{0}$ is discontinuous at $
We prove norm inflation and hence ill-posedness for a class of shallow water wave equations, such as the Camassa-Holm equation, Degasperis-Procesi equation and Novikov equation etc., in the critical Sobolev space $H^{3/2}$ and even in the Besov space
Considered herein are the generalized Camassa-Holm and Degasperis-Procesi equations in the spatially periodic setting. The precise blow-up scenarios of strong solutions are derived for both of equations. Several conditions on the initial data guarant
Series of deformed Camassa-Holm-type equations are constructed using the Lagrangian deformation and Loop algebra splittings. They are weakly integrable in the sense of modified Lax pairs.