ترغب بنشر مسار تعليمي؟ اضغط هنا

Ill-posedness of the Camassa-Holm and related equations in the critical space

216   0   0.0 ( 0 )
 نشر من قبل Zihua Guo
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove norm inflation and hence ill-posedness for a class of shallow water wave equations, such as the Camassa-Holm equation, Degasperis-Procesi equation and Novikov equation etc., in the critical Sobolev space $H^{3/2}$ and even in the Besov space $B^{1+1/p}_{p,r}$ for $pin [1,infty], rin (1,infty]$. Our results cover both real-line and torus cases (only real-line case for Novikov), solving an open problem left in the previous works (cite{Danchin2,Byers,HHK}).



قيم البحث

اقرأ أيضاً

68 - Min Li , Yingying Guo 2021
In the paper, by constructing a initial data $u_{0}in B^{sigma}_{p,infty}$ with $sigma-2>max{1+frac 1 p, frac 3 2}$, we prove that the corresponding solution to the higher dimensional Camassa-Holm equations starting from $u_{0}$ is discontinuous at $ t=0$ in the norm of $B^{sigma}_{p,infty}$, which implies that the ill-posedness for the higher dimensional Camassa-Holm equations in $B^{sigma}_{p,infty}$.
In this paper, we give an instability criterion for the Prandtl equations in three space variables, which shows that the monotonicity condition of tangential velocity fields is not sufficient for the well-posedness of the three dimensional Prandtl eq uations, in contrast to the classical well-posedness theory of the Prandtl equations in two space variables under the Oleinik monotonicity assumption of the tangential velocity. Both of linear stability and nonlinear stability are considered. This criterion shows that the monotonic shear flow is linear stable for the three dimensional Prandtl equations if and only if the tangential velocity field direction is invariant with respect to the normal variable, and this result is an exact complement to our recent work cite{LWY} on the well-posedness theory for the three dimensional Prandtl equations with special structure.
We study the existence, uniqueness and regularity of solutions to the $n$-dimensional ($n=2,3$) Camassa-Holm equations with fractional Laplacian viscosity with smooth initial data. It is a coupled system between the Navier-Stokes equations with nonlo cal viscosity and a Helmholtz equation. The main difficulty lies in establishing some a priori estimates for the fractional Laplacian viscosity. To achieve this, we need to explore suitable fractional-power Sobolev-type estimates, and bilinear estimates for fractional derivatives. Especially, for the critical case $displaystyle s=frac{n}{4}$ with $n=2,3$, we will make extra efforts for acquiring the expected estimates as obtained in the case $displaystyle frac{n}{4}<s<1$. By the aid of the fractional Leibniz rule and the nonlocal version of Ladyzhenskayas inequality, we prove the existence, uniqueness and regularity to the Camassa-Holm equations under study by the energy method and a bootstrap argument, which rely crucially on the fractional Laplacian viscosity. In particular, under the critical case $s=dfrac{n}{4}$, the nonlocal version of Ladyzhenskayas inequality is skillfully used, and the smallness of initial data in several Sobolev spaces is required to gain the desired results concernig existence, uniqueness and regularity.
In this article we present ill-posedness results for generalized Boussinesq equations, which incorporate also the ones obtained by the authors for the classical good Boussinesq equation (arXiv:1202.6671). More precisely, we show that the associated f low map is not smooth for a range of Sobolev indices, thus providing a threshold for the regularity needed to perform a Picard iteration for these problems.
112 - Mengyun Liu , Chengbo Wang 2018
In this paper, we investigate the problem of optimal regularity for derivative semilinear wave equations to be locally well-posed in $H^{s}$ with spatial dimension $n leq 5$. We show this equation, with power $2le ple 1+4/(n-1)$, is (strongly) ill-po sed in $H^{s}$ with $s = (n+5)/4$ in general. Moreover, when the nonlinearity is quadratic we establish a characterization of the structure of nonlinear terms in terms of the regularity. As a byproduct, we give an alternative proof of the failure of the local in time endpoint scale-invariant $L_{t}^{4/(n-1)}L_{x}^{infty}$ Strichartz estimates. Finally, as an application, we also prove ill-posed results for some semilinear half wave equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا