ترغب بنشر مسار تعليمي؟ اضغط هنا

Ill-posedness for the higher dimensional Camassa-Holm equations in Besov spaces

69   0   0.0 ( 0 )
 نشر من قبل Min Li
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the paper, by constructing a initial data $u_{0}in B^{sigma}_{p,infty}$ with $sigma-2>max{1+frac 1 p, frac 3 2}$, we prove that the corresponding solution to the higher dimensional Camassa-Holm equations starting from $u_{0}$ is discontinuous at $t=0$ in the norm of $B^{sigma}_{p,infty}$, which implies that the ill-posedness for the higher dimensional Camassa-Holm equations in $B^{sigma}_{p,infty}$.



قيم البحث

اقرأ أيضاً

We prove norm inflation and hence ill-posedness for a class of shallow water wave equations, such as the Camassa-Holm equation, Degasperis-Procesi equation and Novikov equation etc., in the critical Sobolev space $H^{3/2}$ and even in the Besov space $B^{1+1/p}_{p,r}$ for $pin [1,infty], rin (1,infty]$. Our results cover both real-line and torus cases (only real-line case for Novikov), solving an open problem left in the previous works (cite{Danchin2,Byers,HHK}).
The blow up phenomenon in the first step of the classical Picards scheme was proved in this paper. For certain initial spaces, Bourgain-Pavlovic and Yoneda proved the ill-posedness of the Navier-Stokes equations by showing the norm inflation in certa in solution spaces. But Chemin and Gallagher said the space $dot{B}^{-1,infty}_{infty}$ seems to be optimal for some solution spaces best chosen. In this paper, we consider more general initial spaces than Bourgain-Pavlovic and Yoneda did and establish ill-posedness result independent of the choice of solution space. Our result is a complement of the previous ill-posedness results on Navier-Stokes equations.
143 - Yingying Guo 2021
In this paper, we first establish the local well-posedness (existence, uniqueness and continuous dependence) for the Fornberg-Whitham equation in both supercritical Besov spaces $B^s_{p,r}, s>1+frac{1}{p}, 1leq p,rleq+infty$ and critical Besov spaces $B^{1+frac{1}{p}}_{p,1}, 1leq p<+infty$, which improves the previous work cite{y2,ho,ht}. Then, we prove the solution is not uniformly continuous dependence on the initial data in supercritical Besov spaces $B^s_{p,r}, s>1+frac{1}{p}, 1leq pleq+infty, 1leq r<+infty$ and critical Besov spaces $B^{1+frac{1}{p}}_{p,1}, 1leq p<+infty$. At last, we show that the solution is ill-posed in $B^{sigma}_{p,infty}$ with $sigma>3+frac{1}{p}, 1leq pleq+infty$.
In this article we present ill-posedness results for generalized Boussinesq equations, which incorporate also the ones obtained by the authors for the classical good Boussinesq equation (arXiv:1202.6671). More precisely, we show that the associated f low map is not smooth for a range of Sobolev indices, thus providing a threshold for the regularity needed to perform a Picard iteration for these problems.
112 - Mengyun Liu , Chengbo Wang 2018
In this paper, we investigate the problem of optimal regularity for derivative semilinear wave equations to be locally well-posed in $H^{s}$ with spatial dimension $n leq 5$. We show this equation, with power $2le ple 1+4/(n-1)$, is (strongly) ill-po sed in $H^{s}$ with $s = (n+5)/4$ in general. Moreover, when the nonlinearity is quadratic we establish a characterization of the structure of nonlinear terms in terms of the regularity. As a byproduct, we give an alternative proof of the failure of the local in time endpoint scale-invariant $L_{t}^{4/(n-1)}L_{x}^{infty}$ Strichartz estimates. Finally, as an application, we also prove ill-posed results for some semilinear half wave equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا