ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational waves from gauge preheating

77   0   0.0 ( 0 )
 نشر من قبل Zachary J. Weiner
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study gravitational wave production during Abelian gauge-field preheating following inflation. We consider both scalar and pseudoscalar inflaton models coupled directly to Abelian gauge fields via either a dilatonic coupling to the gauge-field kinetic term or an axial coupling to a Chern-Simons term. In both cases gravitational waves are produced efficiently during the preheating phase, with a signature louder than most cosmological signals. These gravitational waves can contribute to the radiation energy budget of Universe at a level which will be probed by upcoming cosmic microwave background experiments through $N_{rm eff}$. For axially coupled fields the resulting gravitational wave spectrum is helically polarized---a unique feature that can be used to differentiate it from other stochastic gravitational wave backgrounds. We compute the gravitational topological charge and demonstrate that gauge preheating following axion inflation may be responsible for the matter-antimatter asymmetry of the Universe via gravitational leptogenesis.

قيم البحث

اقرأ أيضاً

We study gravitational wave production from gauge preheating in a variety of inflationary models, detailing its dependence on both the energy scale and the shape of the potential. We show that preheating into Abelian gauge fields generically leads to a large gravitational wave background that contributes significantly to the effective number of relativistic degrees of freedom in the early universe, $N_mathrm{eff}$. We demonstrate that the efficiency of gravitational wave production is correlated with the tensor-to-scalar ratio, $r$. In particular, we show that efficient gauge preheating in models whose tensor-to-scalar ratio would be detected by next-generation cosmic microwave background experiments ($r gtrsim 10^{-3}$) will be either detected through its contribution to $N_mathrm{eff}$ or ruled out. Furthermore, we show that bounds on $N_mathrm{eff}$ provide the most sensitive probe of the possible axial coupling of the inflaton to gauge fields regardless of the potential.
We study production of gravitational waves (GWs) in strongly supercooled cosmological phase transitions in gauge theories. We extract from two-bubble lattice simulations the scaling of the GW source, and use it in many-bubble simulations in the thin- wall limit to estimate the resulting GW spectrum. We find that in presence of the gauge field the GW source decays with bubble radius as $propto R^{-3}$ after collisions. This leads to a GW spectrum that follows $Omega_{rm GW} propto omega^{2.3}$ at low frequencies and $Omega_{rm GW} propto omega^{-2.9}$ at high frequencies, marking a significant deviation from the popular envelope approximation.
Stochastic gravitational wave backgrounds (SGWBs) receive increasing attention and provide a new possibility to directly probe the early Universe. In the preheating process at the end of inflation, parametric resonance can generate large energy densi ty perturbations and efficiently produce gravitational waves (GWs) which carry unique information about inflation. Since the peak frequency of such GWs is approximately proportional to the inflationary energy scale, $Lambda_{mathrm{inf}}$, GWs from preheating are expected to be observed by interferometer GW detectors in low-scale inflationary models. We investigate the dependence of the amplitude of such GWs on $Lambda_{mathrm{inf}}$, and find that the present energy spectrum of these GWs does not depend on $Lambda_{mathrm{inf}}$ only in the case of $Lambda_{mathrm{inf}}$ is above a critical value $Lambda_{c}$, a parameter depending on the resonance strength. We numerically obtain $Lambda_{c}$ in terms of the model parameters in linear approximation and then conduct lattice simulations to verify this result. For $Lambda_{mathrm{inf}}lesssimLambda_{c}$, the amplitude of GWs quickly decreases with $Lambda_{mathrm{inf}}$ and becomes challenging to observe. In turn, observing such GWs in interferometer detectors also helps to determine $Lambda_{mathrm{inf}}$ and the resonance strength during the preheating.
We investigate the viability of inflation with a spectator sector comprised of non-Abelian gauge fields coupled through a higher order operator. We dub this model spectator Gauge-flation. We study the predictions for the amplitude and tensor tilt of chiral gravitational waves and conclude that a slightly red-tilded tensor power spectrum is preferred $n_T=-{cal O}(0.01)$. As with related models, the enhancement of chiral gravitational waves with respect to the single-field vacuum gravitational wave background is controlled by the parameter $gamma=g^2 Q^2/H^2$, where $g$ is the gauge coupling, $H$ is the Hubble scale and $Q$ is the VEV of the $SU(2)$ sector. The requirement that the $SU(2)$ is a spectator sector leads to a maximum allowed value for $gamma$, thereby constraining the possible amplification. In order to provide concrete predictions, we use an $alpha$-attractor T-model potential for the inflaton sector. Potential observation of chiral gravitational waves with significantly tilted tensor spectra would then indicate the presence of additional couplings of the gauge fields to axions, like in the spectator axion-SU(2) model, or additional gauge field operators.
Galaxy shapes have been observed to align with external tidal fields generated by the large-scale structures of the Universe. While the main source for these tidal fields is provided by long-wavelength density perturbations, tensor perturbations also contribute with a non-vanishing amplitude at linear order. We show that parity-breaking gravitational waves produced during inflation leave a distinctive imprint in the galaxy shape power spectrum which is not hampered by any scalar-induced tidal field. We also show that a certain class of tensor non-Gaussianities produced during inflation can leave a signature in the density-weighted galaxy shape power spectrum. We estimate the possibility of observing such imprints in future galaxy surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا